Building Knowledge and Connections
Displaying 1 - 25 of 53 results.
Scan this code with your mobile device camera to take this page on-the-go!
https://redirect.aecdaily.com/s7816/www.aecdaily.com/course/1009125
The inherent properties of concrete masonry, including strength, durability, and fire safety, have been well documented, though a perception of high cost persists. Due to significant changes to codes and standards that increased the flexibility of concrete masonry structural design, this construction method may also offer cost-effective and energy-efficient alternative solutions. This course reviews changes to ASTM C90 and the masonry design standard and includes a discussion on the benefits and opportunities these requirements bring.
https://redirect.aecdaily.com/s17339/www.aecdaily.com/course/829062
Rooftop decks create valuable living and recreational space for building owners, residents, and clients. Accommodating restaurants, hotels, healthcare facilities, and everything from residential to government buildings, rooftop deck systems offer the design flexibility to create versatile, unique outdoor spaces over any structural surface. This course explores the features, surface materials, and design options for rooftop deck systems and provides an overview of recommended planning and installation guidelines.
https://redirect.aecdaily.com/s456403/www.aecdaily.com/course/835024
Stairs are often a prominent feature or even the focal point of an architectural design project and play a vital role in creating an aesthetically pleasing interior atmosphere, or an exterior welcoming point to a residential, commercial, or industrial building. This course provides an overview of the many benefits of installing precast concrete stair treads and landings, how to detail and specify them, and how to address related building code, design, and construction requirements.
https://redirect.aecdaily.com/s7816/www.aecdaily.com/course/977173
Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.
https://redirect.aecdaily.com/s1633/www.aecdaily.com/course/986550
Architectural precast concrete products are versatile, sustainable, affordable, and resilient. This course examines the advantages of building with them and discusses the production process, unique characteristics, and installation of architectural precast concrete’s three main product groups.
https://redirect.aecdaily.com/s420795/www.aecdaily.com/course/874439
The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.
https://redirect.aecdaily.com/s624574/www.aecdaily.com/course/1025181
While frequently chosen for aesthetics and durability, clay brick is not often considered when energy efficiency is a primary concern, even though it historically played a significant role in occupant comfort before the widespread use of HVAC systems. This course discusses the basics of heat transfer, relevant energy code provisions for walls, and how current research by the National Brick Research Center demonstrates the role that brick veneer can play in meeting or exceeding energy requirements in modern wall assemblies.
https://redirect.aecdaily.com/s1073957/www.aecdaily.com/course/1101030
Slate has been used for centuries as a long-lasting building material, and its natural beauty is unsurpassed. Today, rainscreen cladding systems have been developed to adapt natural slate to new architectural demands for sustainable building design approaches. This course explores the energy efficiency and moisture management benefits of a rainscreen system in combination with the durability and versatility of slate. The different designs and fastening systems are reviewed, and case studies demonstrate the advantages and possibilities for sustainable and beautiful slate projects.
https://redirect.aecdaily.com/s671/www.aecdaily.com/course/992134
Building science experts acknowledge the need for drainage in both vertical and horizontal applications in order to eliminate moisture issues and extend the life of the building. This course examines foundation wall, green roof, and plaza deck applications and discusses the factors that impact drainage, including soil permeability, saturation, land cover, and loading. Flow rate standards are discussed, and drainage composite mat installation is explained.
https://redirect.aecdaily.com/s456403/www.aecdaily.com/course/966262
When installing precast concrete, it is important to plan for and know how to overcome numerous site challenges. If not dealt with properly, these challenges can prevent a project from passing inspection and can result in installation problems, moving and cracking of pavers, and safety hazards to pedestrians. This course addresses the most frequently asked questions regarding on-site paving issues to facilitate a successful installation for a variety of applications.
https://redirect.aecdaily.com/s9727/www.aecdaily.com/course/845810
The materials we use have a significant impact on the environment, our communities, and our health. Consequently, material transparency—wherein manufacturers disclose vital sustainability information about their products—is an increasingly necessary element of modern life. This course examines the tools and resources that are available for both manufacturers and the A&D community that effectively communicate transparency information and optimization of building products. Also reviewed are the benefits of the new-generation insulated metal panels (IMPs) designed to achieve a trusted range of health and wellness certifications.
https://redirect.aecdaily.com/s877426/www.aecdaily.com/course/938747
Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.
https://redirect.aecdaily.com/s7816/www.aecdaily.com/course/1178510
Concrete masonry units (CMUs) are made from dry-cast concrete, which uses less cement and sequesters carbon at a faster and greater rate than wet-cast concrete. This course begins with an overview of concrete products and the differences between dry- and wet-cast concrete, then explores the relationship between concrete and the carbon cycle, recent research into CMU sequestration rates, and the results of mini life-cycle assessments comparing different wall systems. Finally, some practical strategies for further reducing embodied carbon are reviewed.
https://redirect.aecdaily.com/s386533/www.aecdaily.com/course/926557
Learners will receive information about cast stone and how it is made, testing requirements, applications, design recommendations, and how it differs from related materials. Learners will describe appropriate specification, design details of cast stone for architectural applications, and how to determine quality cast stone production.
https://redirect.aecdaily.com/s9572/www.aecdaily.com/course/953062
One of the more complicated issues today in building science is addressing moisture movement, since moisture can penetrate a building in several different ways and result in material degradation, air quality issues, and failure of the building enclosure. This course examines the ways moisture can enter a structure and discusses the role of different moisture control layers that, when correctly placed and installed, can prevent unwanted moisture infiltration.
https://redirect.aecdaily.com/s1118374/www.aecdaily.com/course/1142344
Waterproof, fireproof, nonporous, and eco-friendly natural slate has great value as a building material, particularly given its ability to protect structures for generations. This course reviews the characteristics and properties of slate, presents some of the many design options, and provides guidance on sourcing and specification. The sustainability benefits of roofing slate are also discussed, from its extraction and low-impact processing to its strength and enduring properties in all weather conditions.
https://redirect.aecdaily.com/s7816/www.aecdaily.com/course/802273
Interlocking concrete pavers (ICP) have the ability to spread applied loads via the interlock between each unit. This means that the surface does not respond structurally as single pavers but as a composite paved surface. This structural characteristic of ICP allows the design method for these pavements to be based on flexible pavement design. In this course, we examine the ASCE and ICPI structural design methods for ICP and review examples using different soil strengths/stiffnesses and traffic uses. Finally, we survey the design and construction support material and software available from the Interlocking Concrete Pavement Institute.
https://redirect.aecdaily.com/s987165/www.aecdaily.com/course/1043405
Wind forces always influence building design and detailing. This course focuses on one particular force, wind uplift, and its influence on roof paving system design and selection. It examines how wind loads and building configuration affect the design of roof paving systems; the codes, regulations, and calculation approaches that inform and control such designs; and the various options designers can use to design safe, appealing outdoor roof paving systems that will withstand even the strongest winds.
https://redirect.aecdaily.com/s561226/www.aecdaily.com/course/999984
Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.
https://redirect.aecdaily.com/s1124494/www.aecdaily.com/course/1138490
This course provides a comprehensive overview of quartz surfacing as a sustainable material in contemporary design. It examines the environmental impact, safety standards, and wide-ranging applications of quartz surfacing. The course focuses on manufacturing processes, performance characteristics, and the material’s contribution to sustainability, equipping participants with the knowledge to effectively utilize quartz surfacing in residential and commercial projects.
https://redirect.aecdaily.com/s1203/www.aecdaily.com/course/1185008
Terracotta rainscreen cladding systems enhance building envelope performance through improved moisture management, reflected in the WELL Building Standard™ version 2, as well as through energy efficiency, structural integrity, and durability. The course examines the manufacturing of terracotta cladding, highlighting responsible clay sourcing and postextraction site reclamation, and discusses performance, aesthetics, and sustainability benefits, including how terracotta cladding can contribute to meeting the requirements of LEED® v5 Building Design and Construction (BD+C): New Construction. Additional topics include system color, layout, and wall assembly options, best installation practices, and industry standards and tests.
https://redirect.aecdaily.com/s10541/www.aecdaily.com/course/1012800
Masonry wall types have evolved from self-supporting mass walls to cavity walls and veneers that require wall ties or anchors. Over time, anchors can fail and masonry wall systems can become unstable and require repair. This course discusses how to recognize unstable façades, how retrofit anchors can be used to repair these instabilities, the different types of anchors available, and how to determine the proper repair procedure.
https://redirect.aecdaily.com/s10541/www.aecdaily.com/course/895029
As some of the earliest building materials, masonry and concrete have been used for their durability and strength. However, masonry architecture, both historical and contemporary, has been left vulnerable to water—the single most damaging element to masonry in our environment. This course identifies common water-related problems for masonry and concrete, describes protective treatments that increase masonry durability, and explains the process for safely selecting and applying a protective treatment.
https://redirect.aecdaily.com/s10541/www.aecdaily.com/course/1049838
This program introduces building retrofits as a method to achieve green building standards by adapting existing structures. While a building retrofit may have several types of interventions, effective air sealing improves the durability of the structure and occupant comfort, health, and safety. This course includes a detailed look at sources of air leakage and the various methods available to address this infiltration. Several real-world examples demonstrate the importance of identifying the source of air leakage, investigating existing conditions, and proper detailing.
https://redirect.aecdaily.com/s5654/www.aecdaily.com/course/857200
Concrete is the most widely used construction material in the world, second only to water. Over time, as a result of the build-up of atmospheric compounds in the surrounding environment, concrete will become discolored, stained, dirty, and dingy. This course examines photocatalytic technology which accelerates self-cleaning and fights air pollution while maintaining the mechanical and physical properties of traditional concrete.
🍪 We use cookies to offer you a better browsing experience, analyze site traffic, personalize content, and serve targeted advertisements. Read about how we use cookies and how you can control them by clicking here. Click "cookie settings" to adjust your preferences.