Category: MASONRY

Displaying 1 - 25 of 52 results.

FIRST [1-25] [26-50] [51-52] NEXT LAST SHOW ALL

  • ( ~ 1 hour, 15 minutes ) 

    Typically, all the brick selected for a given project will be either full bed depth (anchored) or thin brick (adhered); however, situations may benefit from combining the two types of masonry veneer on a project. The intent of this course is to differentiate between the types of brick masonry veneer, discuss the unique detailing required when combining veneer types, and provide project examples demonstrating where both types of masonry veneer have been successfully integrated. This course will focus on exterior applications of anchored and adhered masonry veneer.

  • ( ~ 1 hour ) 

    Stairs are an essential component of a movement and wayfinding strategy in a structure and a primary means of egress, exit, and floor-to-floor access in the event of a fire or emergency for buildings with multiple floors or a change in rise. This course discusses stair and egress system design and evaluates why the design and fabrication of pre-engineered steel stairs create safe stair environments that comply with building codes.

  • ( ~ 1 hour ) 

    The inherent properties of concrete masonry, including strength, durability, and fire safety, have been well documented, though a perception of high cost persists. Due to significant changes to codes and standards that increased the flexibility of concrete masonry structural design, this construction method may also offer cost-effective and energy-efficient alternative solutions. This course reviews changes to ASTM C90 and the masonry design standard and includes a discussion on the benefits and opportunities these requirements bring.

  • ( ~ 1 hour ) 

    This course explores insulating concrete forms (ICFs) as part of a sustainable construction system by covering their benefits, applications, and design considerations. The course delves into the structural properties, energy efficiency, and environmental impact of ICFs. Also presented are best practices for integrating ICFs into various architectural projects and a concise overview of installation steps.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete masonry units (CMUs) are made from dry-cast concrete, which uses less cement and sequesters carbon at a faster and greater rate than wet-cast concrete. This course begins with an overview of concrete products and the differences between dry- and wet-cast concrete, then explores the relationship between concrete and the carbon cycle, recent research into CMU sequestration rates, and the results of mini life-cycle assessments comparing different wall systems. Finally, some practical strategies for further reducing embodied carbon are reviewed.

  • ( ~ 1 hour ) 

    Architectural precast concrete products are versatile, sustainable, affordable, and resilient. This course examines the advantages of building with them and discusses the production process, unique characteristics, and installation of architectural precast concrete’s three main product groups.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour ) 

    Stucco is a popular and durable finishing material that offers many benefits, combining safety and affordability while satisfying aesthetic needs. It can be applied to various surfaces using a lath system, which provides support for stucco. However, the quality of the stucco lath embedment can greatly affect its performance. This course covers the proper technique for achieving lath embedment, the different types of metal lath and their various applications, and regional material preferences.

  • ( ~ 1 hour ) 

    Rooftop decks create valuable living and recreational space for building owners, residents, and clients. Accommodating restaurants, hotels, healthcare facilities, and everything from residential to government buildings, rooftop deck systems offer the design flexibility to create versatile, unique outdoor spaces over any structural surface. This course explores the features, surface materials, and design options for rooftop deck systems and provides an overview of recommended planning and installation guidelines.

  • ( ~ 1 hour ) 

    Ensuring proper use of methods and materials allows masonry walls to perform well and enjoy a long life. Use of masonry joint reinforcement and accessories is an essential part of this. This course provides a brief history of solid masonry walls leading up to the modern cavity walls of today, including a discussion of the basic working knowledge of masonry joint reinforcing, structural codes, and moisture control in cavity wall construction.

  • ( ~ 1 hour, 30 minutes ) 

    Insulating concrete form (ICF) products use a cost-effective and robust structural material option (reinforced concrete) to turn a building envelope into a high-performing thermal, moisture, and air enclosure with disaster resistance and built-in compliance with energy code requirements. As a result of ICF performance, building owners can complete a whole structure with ICFs and reinforced concrete, including intermediate suspended floors, rooftops, and multistory designs. This course examines the advancements in ICF technology and discusses the potential contribution of ICFs to supporting improved sustainability and resilience.

  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.

  • ( ~ 1 hour ) 

    One of the more complicated issues today in building science is addressing moisture movement, since moisture can penetrate a building in several different ways and result in material degradation, air quality issues, and failure of the building enclosure. This course examines the ways moisture can enter a structure and discusses the role of different moisture control layers that, when correctly placed and installed, can prevent unwanted moisture infiltration.

  • ( ~ 1 hour ) 

    As environmental concerns grow, repurposing materials and finding new ways to showcase their unique qualities in design have become increasingly important. This course examines terrazzo’s history, system types, flooring assemblies, and restoration and refinishing options. Discover its enduring versatility and charm through renovation projects featuring newly installed and renewed vintage floors, where its durability, material attributes, and design potential can help meet credit requirements in the LEED ® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building StandardTM version 2.

  • ( ~ 1 hour, 15 minutes ) 

    Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.

  • ( ~ 1 hour ) 

    As some of the earliest building materials, masonry and concrete have been used for their durability and strength. However, masonry architecture, both historical and contemporary, has been left vulnerable to water—the single most damaging element to masonry in our environment. This course identifies common water-related problems for masonry and concrete, describes protective treatments that increase masonry durability, and explains the process for safely selecting and applying a protective treatment.

  • ( ~ 1 hour ) 

    The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour ) 

    Hidden access covers blend utility access covers with the surface continuity of streetscape, hardscape, and landscape designs. This course reviews the functions, product types, and specification and installation considerations of hidden access cover solutions.

  • ( ~ 1 hour, 30 minutes ) 

    Permeable interlocking concrete pavement (PICP) has the ability to create solid, strong surfaces for pedestrians and a range of vehicular uses; it can help maintain a site’s existing natural hydrologic function and reduce the overall impact of development. This course discusses the components of a PICP system and how they work together to manage stormwater in a variety of applications. Also addressed are hydrological and structural factors to consider when designing with PICP and how PICP contributes to sustainable building goals and projects.

  • ( ~ 1 hour ) 

    Movable pool and spa floor technology enables an entirely flexible, multifunctional living and recreational space to complement any architectural vision. Presented here are types of movable pool floors, pool floor technology, options and amenities, and safety and sustainability performance considerations.

  • ( ~ 1 hour ) 

    Building science experts have acknowledged the need for both drainage and ventilation in exterior wall systems in order to eliminate moisture issues and extend the life of buildings. This presentation reviews the concepts of rainscreen technology and the solutions for compliance with a focus on engineered rainscreen drainage and ventilation mats used in direct-applied and ventilated wall designs. Prerequisites: No Course Level: Introductory

  • ( ~ 1 hour ) 

    Throughout history, concrete mixes and carved natural stone have combined to create substance, beauty, and longevity in our architecture. Glass fiber reinforced concrete (GFRC) was created to ensure that the attributes of concrete and stone continue to be enjoyed but with efficiency in the application that is expected in today's world of design. This course covers the creation of GFRC, its components, fabrication, applications, and design capabilities. It compares GFRC to other types of architectural concrete and presents GFRC performance and sustainable design advantages.

  • ( ~ 1 hour ) 

    With the global rise in natural disasters and the increasing need for sustainable environments, resiliency has become a necessity in the design and building industries. This course provides an overview of resilient design, how it relates to building codes and standards, and the role it plays in ensuring the safety and sustainability of the built environment. It examines the role masonry construction plays in meeting resilient design goals and the inherent properties of masonry that make it resilient and provides examples and case studies of resilient design strategies.

  • ( ~ 1 hour ) 

    Wind forces always influence building design and detailing. This course focuses on one particular force, wind uplift, and its influence on roof paving system design and selection. It examines how wind loads and building configuration affect the design of roof paving systems; the codes, regulations, and calculation approaches that inform and control such designs; and the various options designers can use to design safe, appealing outdoor roof paving systems that will withstand even the strongest winds.

Displaying 1 - 25 of 52 results.

FIRST [1-25] [26-50] [51-52] NEXT LAST SHOW ALL