Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Building owners value daylighting and views but face security and safety challenges with large amounts of glazing. Thermoplastic sheet products offer a variety of glazing solutions that resist security threats while providing transparency, strength, and durability. This course introduces the grades and characteristics of acrylic and polycarbonate sheet products and discusses how they meet the requirements for protection against forced entry and ballistics.

  • ( ~ 1 hour ) 

    Architects and other design professionals have a critical role to play in reducing global greenhouse gas emissions through building design and product selection. The urgent need to reduce both operational and embodied carbon means that building designers must be familiar with transparency documents that facilitate low-carbon product selection. In this course, we review the types of carbon of concern, transparency documents that provide critical information, and tools for sourcing embodied carbon information. We also look at the contribution of insulated metal panels to both low embodied and low operational carbon buildings.

  • ( ~ 1 hour ) 

    Standing seam metal roofing has been used successfully in the United States for centuries, and proper specification is key to realizing its intended performance. Examined here are: the factors driving the demand for standing seam metal roof and wall systems; standing seam panel basics; gauge and grade; oil canning; specification considerations; testing standards; and forming, delivery, storage, handling and warranty.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour ) 

    For many years, preformed metal wall panels have been a top choice for building owners and architects, offering an excellent blend of cost effectiveness, functionality, and aesthetic appeal, particularly in rainscreen and screen walls. This course examines the different materials, profiles, and finish options for these panels and dives into applications and best practices for design and installation.

  • ( ~ 1 hour ) 

    A rooftop solar photovoltaic system offers myriad benefits to both building owners and the environment; to maximize the benefits, however, it is important to be aware of the potential causes and effects of problems with rooftop installations. This course presents the issues to consider to prevent damaging the roof, voiding the roofing warranty, and incurring additional costs. Solar system mounting options are explored in terms of how they can help eliminate concerns around rooftop installations.

  • ( ~ 30 minutes ) 

    The war in Ukraine has left thousands living in substandard housing conditions, insufficient for winter weather. This course reviews a solution developed by a British engineer that addresses the pressing problem of delivering replacement windows in a war zone to improve thermal comfort in Ukrainian homes.

  • ( ~ 1 hour ) 

    With the demand for sustainable power on the rise, building owners and homeowners alike are turning to solar power as a supplemental power generator. Choosing the right platform for the solar panels is a critical step in the design process and can have a significant impact on both initial and long-term costs. This course discusses the basics of photovoltaic systems, including the components and rooftop applications. Comparisons between traditional roofing and standing seam metal roofing platforms are examined, and the benefits of a nonpenetrating clamping system are discussed.

  • ( ~ 1 hour ) 

    At their root, metal roofs and walls made from steel, copper, zinc, or aluminum have a lower environmental impact because of their ability to be recycled and reused. This course focuses on the green aspects of standing seam metal roofs, and in particular, their cool roof characteristics. Also addressed are the implications of heat islands, what constitutes construction of cool roofs/walls and how they work, some rules of thumb for understanding cool metal roofing, roof slope impacts on performance, and codes, ratings, and standards that apply to designing cool roofs/walls.

  • ( ~ 1 hour ) 

    Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.

  • ( ~ 1 hour ) 

    Building science experts acknowledge the need for drainage in both vertical and horizontal applications in order to eliminate moisture issues and extend the life of the building. This course examines foundation wall, green roof, and plaza deck applications and discusses the factors that impact drainage, including soil permeability, saturation, land cover, and loading. Flow rate standards are discussed, and drainage composite mat installation is explained.

  • ( ~ 1 hour ) 

    Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.

  • ( ~ 1 hour ) 

    Insulated vinyl siding, known as insulated siding, is an exterior cladding that combines the protection and low maintenance of traditional vinyl siding with the energy efficiency of EPS foam. The composite results in an improvement in performance and aesthetics. This course discusses the benefits associated with installing insulated siding on new and renovation residential construction projects, and the range of architectural styles that can be achieved with the breadth of design and color options available.

  • ( ~ 1 hour ) 

    Throughout history, concrete mixes and carved natural stone have combined to create substance, beauty, and longevity in our architecture. Glass fiber reinforced concrete (GFRC) was created to ensure that the attributes of concrete and stone continue to be enjoyed but with efficiency in the application that is expected in today's world of design. This course covers the creation of GFRC, its components, fabrication, applications, and design capabilities. It compares GFRC to other types of architectural concrete and presents GFRC performance and sustainable design advantages.

  • ( ~ 1 hour ) 

    Architectural metal fabric is a dynamic interior and exterior material used to create beautiful and functional façades, balustrades, and screening for a wide variety of commercial and public structures. This course discusses applications for metal fabric and its performance benefits, including safety, security, solar management, and sustainability. It also discusses how coatings and graphics technologies can be incorporated into metal fabrics to enhance branding and visual identity.

  • ( ~ 1 hour ) 

    Redwood Timbers are a safe, strong, and sustainable option for exterior and interior building projects where natural wood is desired. This course provides an overview of the properties of Redwood Timbers including insulation properties, grades, dimensions, fasteners, finishing options, and strength. It concludes with numerous case studies exploring the use of Redwood Timbers for post and beam construction, decorative elements, deck posts, and outdoor living structures.

  • ( ~ 1 hour ) 

    The materials we use have a significant impact on the environment, our communities, and our health. Consequently, material transparency—wherein manufacturers disclose vital sustainability information about their products—is an increasingly necessary element of modern life. This course examines the tools and resources that are available for both manufacturers and the A&D community that effectively communicate transparency information and optimization of building products. Also reviewed are the benefits of the new-generation insulated metal panels (IMPs) designed to achieve a trusted range of health and wellness certifications.

  • ( ~ 1 hour ) 

    Learners will receive information about cast stone and how it is made, testing requirements, applications, design recommendations, and how it differs from related materials. Learners will describe appropriate specification, design details of cast stone for architectural applications, and how to determine quality cast stone production.

  • ( ~ 1 hour, 15 minutes ) 

    According to building professionals, the solution to achieving an energy-efficient building envelope is to focus more on the roof. Protected membrane roof (PMR) assemblies deliver thermal efficiency and can play a valuable role in a sustainable design strategy. Presented in this course is a review of the components, advantages, ballast options, and design and installation considerations of PMR assemblies.

  • ( ~ 1 hour ) 

    The beautiful gray patina of zinc architectural metal has graced the rooftops of buildings in Europe for hundreds of years. This course examines the sustainable characteristics of zinc as a roofing material, including its 100% recyclability, zero VOC requirement, and low embodied energy production process. The life cycle analysis of zinc is examined, as is zinc’s long-term service life. Various types of roof and wall applications are also discussed.

  • ( ~ 1 hour, 30 minutes ) 

    The key to an energy-efficient metal building is the implementation of a continuous insulation system that virtually eliminates thermal bridging and prevents condensation. This course discusses how using thermal spacer blocks and metal building insulation in the building envelope increases energy performance, protects against condensation, and meets stringent energy code requirements.

  • ( ~ 1 hour ) 

    Commercial aluminum wall, window, and roof systems have undergone improvements in recent decades, making them technologically sufficient to meet contemporary standards of durability. In addition to being familiar with the systems’ thermal and other ecological benefits, specifiers need to understand paint chemistry and the difference between powder and liquid coating application methods. It is also important to understand third-party specifications published by AAMA, which cover architectural coatings.

  • ( ~ 1 hour ) 

    Homeowners are looking for alternatives to traditional cladding materials that are affordable and long lasting and require little or no upkeep. Advances in technology and manufacturing techniques mean cellular PVC cladding products can meet all these requirements without sacrificing aesthetics. This course reviews the benefits of cellular PVC as a cladding material and discusses how cellular PVC rebutted and rejointed (R&R) prefinished shingles can provide the look and feel of wood shingles with an extended level of durability and low maintenance.

  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.

  • ( ~ 1 hour ) 

    Masonry wall types have evolved from self-supporting mass walls to cavity walls and veneers that require wall ties or anchors. Over time, anchors can fail and masonry wall systems can become unstable and require repair. This course discusses how to recognize unstable façades, how retrofit anchors can be used to repair these instabilities, the different types of anchors available, and how to determine the proper repair procedure.

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST