Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour, 15 minutes ) 

    Critical to concrete waterproofing are the products used in combination to create a system that ensures complete control of moisture migration. Presented here are effective concrete waterproofing technologies and how they improve the durability and lifespan of structures. Discussions include water penetration, system selection, membrane protection, and cementitious waterproofing.

  • ( ~ 1 hour, 15 minutes ) 

    As part of a well-designed rainscreen system, single-skin metal panels offer unique aesthetic options combined with the assurance that the building envelope will withstand the effects of long-term exposure to the elements. This course compares common cladding types; presents single-skin metal panel materials, coatings, finishes, and design options; and examines using single-skin metal panels with a single-component barrier wall to form a complete rainscreen assembly. This course is one of two identical courses titled Single-Skin Metal Panel Building Envelope Solutions . You will receive credit for taking only one of these courses.

  • ( ~ 1 hour ) 

    Architectural metal panels (AMPs) provide exceptional design versatility, enhancing both the aesthetics and functionality of a building. This course explores different types of panels, their applications, finishes, key design and specification considerations, and best practices to ensure the durability and performance of the panel system. Additionally, several project examples are presented to showcase the creative applications of AMP systems.

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    Rainscreens are a multicomponent system offering redundancy in resisting the weather; however, continuity of each component is critical. When an insulated metal panel (IMP) is used within the system, it can function as a number of these components, simplifying installation and improving performance. This course looks at IMPs acting as barrier walls behind various rainscreen systems, with a discussion on the performance characteristics for air, water, vapor, and thermal management.

  • ( ~ 1 hour ) 

    Sustainable building envelopes demand high performance from and proper installation of continuous insulation and air, water, and vapor control layers. What happens when thousands of holes are made in these materials as they are installed with blind fasteners, one layer on top of another by different subcontractors? Sequencing issues can generally not be avoided; instead, this course focuses on self-sealing fasteners as a solution to avoid damage and thermal bridging in insulation and control layers. Various fasteners and anchors are described, and recommendations are presented for how to specify and what testing data to look for.

  • ( ~ 1 hour, 30 minutes ) 

    Insulating concrete form (ICF) products use a cost-effective and robust structural material option (reinforced concrete) to turn a building envelope into a high-performing thermal, moisture, and air enclosure with disaster resistance and built-in compliance with energy code requirements. As a result of ICF performance, building owners can complete a whole structure with ICFs and reinforced concrete, including intermediate suspended floors, rooftops, and multistory designs. This course examines the advancements in ICF technology and discusses the potential contribution of ICFs to supporting improved sustainability and resilience.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.

  • ( ~ 1 hour ) 

    Outdoor decks are commonly desired by homeowners and commercial property owners for both new and existing properties. Wood has long been the structural choice for outdoor deck materials. However, wood has disadvantages that can be mitigated with steel deck framing structural construction. In this course, we will discover that light-gauge steel (LGS) is lighter in weight than structural wood, is less susceptible to deterioration due to the elements and pests, requires less maintenance over time, is a sustainable material, and offers unparalleled safety features for dead loads, live loads, and environmental loads such as snow, earthquakes, and wind. Steel deck framing is quick to erect and provides for longer spans than wood of similar cross-sectional size. Structural materials can be easily lifted, and waste is reduced.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour ) 

    For many years, preformed metal wall panels have been a top choice for building owners and architects, offering an excellent blend of cost effectiveness, functionality, and aesthetic appeal, particularly in rainscreen and screen walls. This course examines the different materials, profiles, and finish options for these panels and dives into applications and best practices for design and installation.

  • ( ~ 1 hour ) 

    The primary purpose of a roof is to provide shelter and protection; to do so effectively over the long term, proper drainage and ventilation are required. Presented here are the categories of metal roofing, the moisture- and noise-related issues associated with architectural metal roofs, the use of a three-dimensional drainage and ventilation mat as a solution to these issues, and best practices for incorporating a mat in metal and cedar roof assemblies.

  • ( ~ 1 hour ) 

    Understanding the performance of building materials in real-world conditions is key to a successful building design. Recent studies have shown that the commonly reported R-values of polyisocyanurate foams at room temperature may overstate their real-world performance in cooler temperatures, potentially resulting in gaps in designed building enclosure assembly performance and quality. Through a theoretical framework and empirical data, this course shows that optimized polyisocyanurate foam insulation results in better performance, leading to improved energy savings and reduced potential for condensation. Participants are encouraged to explore innovative insulation materials, understand differences between them, and match optimal materials to specific applications while meeting modern construction codes and regulations. By matching the right insulation materials to the application, architects can contribute to energy-efficient and cost-conscious construction practices and help buildings reduce their impact on the environment.

  • ( ~ 1 hour ) 

    Rooftop decks create valuable living and recreational space for building owners, residents, and clients. Accommodating restaurants, hotels, healthcare facilities, and everything from residential to government buildings, rooftop deck systems offer the design flexibility to create versatile, unique outdoor spaces over any structural surface. This course explores the features, surface materials, and design options for rooftop deck systems and provides an overview of recommended planning and installation guidelines.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour, 15 minutes ) 

    An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.

  • ( ~ 1 hour ) 

    Historically, traditional waterproofing methods involve the placement of a barrier or membrane between the concrete and water. Unlike membranes and other surface systems, crystalline waterproofing is designed to make the concrete itself waterproof. This course discusses how crystalline waterproofing technology provides a high level of performance to concrete structures and what design professionals need to know in order to specify and understand how this chemical technology can improve building projects, cut costs, and help earn LEED® credits.

  • ( ~ 1 hour ) 

    In the fight against climate change, efforts intensify against the planet’s number one enemy—carbon dioxide. The building industry will play a significant role in these efforts. Embodied carbon—the global greenhouse gas emissions generated from sourcing raw material and processing, manufacturing, transporting, and installing building materials—will be the target over the next decade. This course will define embodied carbon, its impact on greenhouse gas emissions, the construction industry's impact, and the methods and tools that building designers can employ to limit embodied carbon.

  • ( ~ 1 hour ) 

    Thermally controlled environments such as cold storage freezers and coolers, and food processing and packaging facilities take many different forms. Their performance and functionality depend on their project-specific requirements and can be affected by the conditions the materials and systems are subjected to. This course discusses how insulated metal panels (IMPs) perform the necessary functions to provide an effective energy-efficient building envelope and why they are suitable for use within temperature-controlled hygienic environments—where performance is critical.

  • ( ~ 1 hour ) 

    Building owners value daylighting and views but face security and safety challenges with large amounts of glazing. Thermoplastic sheet products offer a variety of glazing solutions that resist security threats while providing transparency, strength, and durability. This course introduces the grades and characteristics of acrylic and polycarbonate sheet products and discusses how they meet the requirements for protection against forced entry and ballistics.

  • ( ~ 1 hour ) 

    Single-family attached residences (residences that share one or more walls between neighbors) are required to utilize area separation walls between units. A key design criterion of any firewall—besides its fire rating—is that it be structurally independent in a fire. This course evaluates two-hour fire-resistance-rated walls used in single-family attached and multifamily residential construction, the options available in today’s marketplace, firewall installation requirements, and fire-resistance testing.

  • ( ~ 1 hour, 15 minutes ) 

    In the 1920s, aluminum turned the world of metals upside down with its benefits of light weight, strength, fabrication flexibility, and durability. Since then, finishing technology has provided a steady stream of protection and coloring improvements. This course explores the sustainability of aluminum, the anodizing process, and the performance characteristics of architectural anodized aluminum. It includes information to assist in the selection and specification of architectural anodized finishes for aluminum sheet, extrusions, and panels.

  • ( ~ 1 hour ) 

    Not only is standing seam metal roofing (SSMR) robust and durable, but the seam itself also provides a convenient anchorage point for the mounting of rooftop equipment. This course reviews the features and advantages of SSMR in terms of durability and sustainability, and the appropriate attachment solutions for mounting equipment. The course focuses on nonpenetrating roof seam clamps and design considerations for their use with snow retention and solar panel systems.

  • ( ~ 1 hour ) 

    Fundamentally, a building envelope functions as an environmental separator, and has specific hygrothermal control requirements. This course examines how insulated metal panels (IMPs) create the perfect envelope solution, incorporating the same control layers as site built wall systems. Discussions include: building envelope design; perfect/universal walls; and the use of IMPs to provide the building envelope’s exterior finish, and the air, vapor, water, and thermal barriers.

  • ( ~ 1 hour ) 

    New technology and improvements in masonry veneer installation can help your team save time and money in the construction process while providing superior results. In this course, you'll learn how cutting-edge technology is helping masons move beyond traditional lath and scratch and be introduced to the principles behind enhanced masonry veneer installation systems (EMVIS). Learn how to create permanent, high-strength installations for residential, commercial, and industrial applications using EMVIS with fortified mortars and innovative waterproofing barrier membranes that protect against air and water penetration.

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST