Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    A rooftop solar photovoltaic system offers myriad benefits to both building owners and the environment; to maximize the benefits, however, it is important to be aware of the potential causes and effects of problems with rooftop installations. This course presents the issues to consider to prevent damaging the roof, voiding the roofing warranty, and incurring additional costs. Solar system mounting options are explored in terms of how they can help eliminate concerns around rooftop installations.

  • ( ~ 1 hour ) 

    Outdoor living space has become an important residential design consideration in the last several years. Decks create welcoming spaces to relax and entertain with family and friends, and a well-built deck can add more living space and value to a home. This course discusses deck surfaces, maintenance, and costs and explores porcelain tile as an alternative to wood and composite deck surfaces that is well suited to exterior environments. Also discussed is how porcelain tile can be used with a new pultruded fiberglass and composite underlayment, called structural ribbed self-supporting boards, and the sustainable features of this technology.

  • ( ~ 1 hour, 15 minutes ) 

    ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.

  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.

  • ( ~ 1 hour ) 

    Ensuring proper use of methods and materials allows masonry walls to perform well and enjoy a long life. Use of masonry joint reinforcement and accessories is an essential part of this. This course provides a brief history of solid masonry walls leading up to the modern cavity walls of today, including a discussion of the basic working knowledge of masonry joint reinforcing, structural codes, and moisture control in cavity wall construction.

  • ( ~ 1 hour, 30 minutes ) 

    Attic ventilation is an important component in proper structural design. By encouraging airflow, attic ventilation plays a key role in maintaining structural integrity, ensuring roof component durability, providing a healthy indoor environment, and minimizing energy consumption. Additionally, proper attic ventilation hinders or prevents mold growth, reduces interior pollutants, and acts as a pivotal fire prevention tool. This course looks at how attic ventilation systems work, the benefits they provide, and the associated building codes and regulations.

  • ( ~ 1 hour ) 

    High-performance, fully composite insulated wall panels deliver all the benefits of factory precasting with load-bearing and energy efficiency performance from the lightest, thinnest panels possible. This course describes the makeup and cost efficiencies of composite precast panels, their benefits when made with carbon fiber grid shear trusses, and considerations for selecting among the insulation options. The majority of the course focuses on case studies of successful precast enclosure projects in a wide variety of building types across a range of markets.

  • ( ~ 1 hour ) 

    Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.

  • ( ~ 1 hour ) 

    Redwood Timbers are a safe, strong, and sustainable option for exterior and interior building projects where natural wood is desired. This course provides an overview of the properties of Redwood Timbers including insulation properties, grades, dimensions, fasteners, finishing options, and strength. It concludes with numerous case studies exploring the use of Redwood Timbers for post and beam construction, decorative elements, deck posts, and outdoor living structures.

  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.

  • ( ~ 1 hour ) 

    Precast concrete pavers and roof deck systems enable designers to deliver on aesthetics and design objectives while achieving safety and durability requirements. Patented roof deck systems allow for the creation of safe and stable roof deck patios and green roofs that maintain sustainability requirements. This course examines the raw materials used in these systems, reviews the different finishes available, and discusses different paver applications and their methods of installation.

  • ( ~ 1 hour ) 

    The primary purpose of a roof is to provide shelter and protection; to do so effectively over the long term, proper drainage and ventilation are required. Presented here are the categories of metal roofing, the moisture- and noise-related issues associated with architectural metal roofs, the use of a three-dimensional drainage and ventilation mat as a solution to these issues, and best practices for incorporating a mat in metal and cedar roof assemblies.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20–70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour ) 

    Architectural metal fabric is a dynamic interior and exterior material used to create beautiful and functional façades, balustrades, and screening for a wide variety of commercial and public structures. This course discusses applications for metal fabric and its performance benefits, including safety, security, solar management, and sustainability. It also discusses how coatings and graphics technologies can be incorporated into metal fabrics to enhance branding and visual identity.

  • ( ~ 1 hour, 15 minutes ) 

    There are a multitude of building envelope products used and a variety of methods taken for achieving energy and building code requirements. Understanding the different roles a product plays in the envelope simplifies its design. In this course, we take a look at the code requirements for buildings classified as IBC Types I–IV, paths to achieving compliance, and the number of roles polyisocyanurate insulation plays in meeting these requirements.

  • ( ~ 1 hour, 15 minutes ) 

    Insulation can help increase overall energy efficiency, minimize the spread of fire, manage risks associated with moisture and mold, and improve occupant comfort. Choosing the right insulation and putting it in the right location is becoming one of the most important decisions in design, construction, and retrofit. Reviewed in this course are the features, benefits, and design and installation considerations related to mineral wool continuous insulation.

  • ( ~ 1 hour ) 

    The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.

  • ( ~ 1 hour ) 

    Protected membrane roof (PMR) assemblies have been widely adopted in low-slope commercial buildings since the late 1960s. Also known as inverted or upside-down roofs, PMR assemblies move the waterproofing membrane from the top of the roof assembly to the surface of the structural deck. This course explores how PMR assemblies provide several advantages over conventional roof assemblies, offering superior protection against water penetration and enhanced energy efficiency. The course also shows how PMR assemblies allow for the creation of green roofs or blue roof systems. With a proven record of reliability, PMR assemblies present a compelling solution for architects seeking innovative, sustainable, and efficient roofing options.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most complex and least understood areas where fire can propagate is at the perimeter of a multistory building. Fire can spread not only from floor to floor via the edge-of-slab/curtain wall intersections but also along the exterior building enclosure where untested, combustible components are often installed. This program outlines best design practices for providing fire protection for building occupants per ASTM E2307 and ASTM E2874.

  • ( ~ 1 hour ) 

    Designing with green roofs affords design professionals opportunities to plan projects with exciting new elements, added value, and significant, tangible benefits, thereby enhancing the built environment with newly-created landscapes. This course examines green roof systems, including the types, benefits, components, and related standards. As well, it provides a discussion on how green roofs mitigate urban heat island effect and reduce stormwater runoff.

  • ( ~ 1 hour ) 

    The beaches and proximity to the Atlantic Ocean are some of the advantages of living in Florida. However, the extreme wind forces from hurricanes can easily damage even the strongest buildings and cause billions of dollars in property loss. As a result, certain areas of Florida―Miami-Dade and Broward Counties—have been designated High Velocity Hurricane Zones. The building products used in these zones must be laboratory tested to meet extreme wind and pressure performance standards. This course explains why a metal roof system designed to minimize the damage from hurricanes is important.

  • ( ~ 1 hour ) 

    A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.

  • ( ~ 1 hour, 15 minutes ) 

    The need to evaluate thermal bridging in a building’s design and performance has become more prevalent because of the increasing requirements for more energy-efficient buildings. This course provides an introduction to thermal bridging, energy code requirements, and the use of thermal break solutions designed to improve energy efficiency in the building envelope.

  • ( ~ 1 hour ) 

    A high-performance building envelope, such as one made with architectural insulated metal panels (IMPs), serves as the building’s primary defense against environmental elements and protects the health and well-being of its occupants. This course reviews the components and benefits of IMPs, which offer all four control layers—air, vapor, thermal, and water—within a single component, delivering superior thermal performance and high-end design.

  • ( ~ 1 hour ) 

    Installing snow retention systems on rooftop applications improves the safety of building occupants and can decrease the risk of property damage. This course identifies different snow guard styles and explains how each contributes to snow retention. Installation techniques are reviewed, and layout designs that maximize occupant safety and minimize hazards are also discussed.

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST