Building Knowledge and Connections
Displaying 1 - 25 of 183 results.
Scan this code with your mobile device camera to take this page on-the-go!
https://redirect.aecdaily.com/s653644/www.aecdaily.com/course/993435
In the 1920s, aluminum turned the world of metals upside down with its benefits of light weight, strength, fabrication flexibility, and durability. Since then, finishing technology has provided a steady stream of protection and coloring improvements. This course explores the sustainability of aluminum, the anodizing process, and the performance characteristics of architectural anodized aluminum. It includes information to assist in the selection and specification of architectural anodized finishes for aluminum sheet, extrusions, and panels.
https://redirect.aecdaily.com/s555712/www.aecdaily.com/course/972529
Outdoor decks are commonly desired by homeowners and commercial property owners for both new and existing properties. Wood has long been the structural choice for outdoor deck materials. However, wood has disadvantages that can be mitigated with steel deck framing structural construction. In this course, we will discover that light-gauge steel (LGS) is lighter in weight than structural wood, is less susceptible to deterioration due to the elements and pests, requires less maintenance over time, is a sustainable material, and offers unparalleled safety features for dead loads, live loads, and environmental loads such as snow, earthquakes, and wind. Steel deck framing is quick to erect and provides for longer spans than wood of similar cross-sectional size. Structural materials can be easily lifted, and waste is reduced.
https://redirect.aecdaily.com/s13907/www.aecdaily.com/course/903646
Concrete-faced insulated products are composite prefinished panels that are used to construct walls and roofing assemblies to maximize the energy efficiency, durability, and performance of a building envelope. This course discusses the design criteria used in designing energy-efficient buildings using concrete-faced continuous insulation systems for low-slope roofing, walls, and foundations. The functional and physical features of protective membrane roof (PMR) systems, concrete-faced insulated panels for walls and foundations, and concrete structural insulated panels (CSIPs) are evaluated.
https://redirect.aecdaily.com/s680223/www.aecdaily.com/course/901794
The key to an energy-efficient metal building is the implementation of a continuous insulation system that virtually eliminates thermal bridging and prevents condensation. This course discusses how using thermal spacer blocks and metal building insulation in the building envelope increases energy performance, protects against condensation, and meets stringent energy code requirements.
https://redirect.aecdaily.com/s789181/www.aecdaily.com/course/1123655
This course explains and illustrates how high-performance, fully composite insulated precast sandwich wall panels can be designed and specified to manage aesthetics, quality, performance, and cost. It explores the pros, cons, and attributes of wythe connectors such as carbon fiber reinforced polymer (CFRP) grid trusses, options for achieving continuous insulation, manufacturing and testing procedures, and strategies for managing costs. It concludes by providing illustrative sample installations to demonstrate the broad range of building types and appearances that can be created with insulated precast enclosures.
https://redirect.aecdaily.com/s356556/www.aecdaily.com/course/1054861
No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.
https://redirect.aecdaily.com/s2356/www.aecdaily.com/course/957597
Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.
https://redirect.aecdaily.com/s3379/www.aecdaily.com/course/1090403
Architects and other design professionals have a critical role to play in reducing global greenhouse gas emissions through building design and product selection. The urgent need to reduce both operational and embodied carbon means that building designers must be familiar with transparency documents that facilitate low-carbon product selection. In this course, we review the types of carbon of concern, transparency documents that provide critical information, and tools for sourcing embodied carbon information. We also look at the contribution of insulated metal panels to both low embodied and low operational carbon buildings.
https://redirect.aecdaily.com/s3379/www.aecdaily.com/course/869438
The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.
https://redirect.aecdaily.com/s356556/www.aecdaily.com/course/1003714
This course aims to educate learners about the chemistry of spray-applied polyurethane foam (SPF), its various applications in the construction industry, safe handling and installation, and its contribution to sustainable design. The advantages of using SPF are highlighted in terms of its benefits to energy conservation and fire safety. Its role as a high-performance air barrier that satisfies code and LEED® criteria and complies with various standards is also discussed.
https://redirect.aecdaily.com/s10851/www.aecdaily.com/course/1141237
Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.
https://redirect.aecdaily.com/s719/www.aecdaily.com/course/870117
Single-skin metal siding can be used for a wide range of projects, from commercial buildings to educational, healthcare, residential, agricultural, and even high-end architectural designs. These siding panels can also contribute to green designs and certification programs. This course explores the different types of single-skin metal siding, specification details, and performance and design considerations.
https://redirect.aecdaily.com/s18795/www.aecdaily.com/course/787410
A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.
https://redirect.aecdaily.com/s1017501/www.aecdaily.com/course/1130360
For many years, preformed metal wall panels have been a top choice for building owners and architects, offering an excellent blend of cost effectiveness, functionality, and aesthetic appeal, particularly in rainscreen and screen walls. This course examines the different materials, profiles, and finish options for these panels and dives into applications and best practices for design and installation.
https://redirect.aecdaily.com/s719/www.aecdaily.com/course/1020058
As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.
https://redirect.aecdaily.com/s1163864/www.aecdaily.com/course/1176113
Vapor barriers beneath concrete slabs on grade are critical for controlling moisture vapor infiltration from the ground. This course provides an overview of vapor barriers used beneath concrete slabs on grade and in crawl spaces, showcasing common flooring failures that occur when a slab is not properly protected. We’ll explore how moisture enters and moves in the concrete, review key prevention and testing methods, and examine relevant industry standards and specification guidance. Finally, we’ll apply these concepts to practical case studies.
https://redirect.aecdaily.com/s707154/www.aecdaily.com/course/969691
Throughout history, concrete mixes and carved natural stone have combined to create substance, beauty, and longevity in our architecture. Glass fiber reinforced concrete (GFRC) was created to ensure that the attributes of concrete and stone continue to be enjoyed but with efficiency in the application that is expected in today's world of design. This course covers the creation of GFRC, its components, fabrication, applications, and design capabilities. It compares GFRC to other types of architectural concrete and presents GFRC performance and sustainable design advantages.
https://redirect.aecdaily.com/s9727/www.aecdaily.com/course/1158278
A high-performance building envelope, such as one made with architectural insulated metal panels (IMPs), serves as the building’s primary defense against environmental elements and protects the health and well-being of its occupants. This course reviews the components and benefits of IMPs, which offer all four control layers—air, vapor, thermal, and water—within a single component, delivering superior thermal performance and high-end design.
https://redirect.aecdaily.com/s18206/www.aecdaily.com/course/920731
Curved elements, such as walls, ceilings, columns, soffits, light covers, clouds, and arches have often been used to add interest to architectural designs. This course outlines conventional methods of framing curves in wood and steel, as well as new methods of framing using flexible track systems. Discussions include options for wall coverings and trims for curved surfaces.
https://redirect.aecdaily.com/s10541/www.aecdaily.com/course/1012800
Masonry wall types have evolved from self-supporting mass walls to cavity walls and veneers that require wall ties or anchors. Over time, anchors can fail and masonry wall systems can become unstable and require repair. This course discusses how to recognize unstable façades, how retrofit anchors can be used to repair these instabilities, the different types of anchors available, and how to determine the proper repair procedure.
https://redirect.aecdaily.com/s19165/www.aecdaily.com/course/999164
At this time, there are no national or state codes relating to snow retention for roofing applications, even in the heaviest snow load areas. Consequently, it is very important for building professionals to take extra care when designing a snow retention system for installations in snowy environments. This course provides a review of the problems and solutions associated with roofing in cold climates, including a discussion on the proper engineering of snow retention devices. There are many dangers involved if the appropriate considerations are not made while building and maintaining a roof in an alpine region.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/1091539
Protected membrane roof (PMR) assemblies have been widely adopted in low-slope commercial buildings since the late 1960s. Also known as inverted or upside-down roofs, PMR assemblies move the waterproofing membrane from the top of the roof assembly to the surface of the structural deck. This course explores how PMR assemblies provide several advantages over conventional roof assemblies, offering superior protection against water penetration and enhanced energy efficiency. The course also shows how PMR assemblies allow for the creation of green roofs or blue roof systems. With a proven record of reliability, PMR assemblies present a compelling solution for architects seeking innovative, sustainable, and efficient roofing options.
https://redirect.aecdaily.com/s2955/www.aecdaily.com/course/894516
Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.
https://redirect.aecdaily.com/s443055/www.aecdaily.com/course/570420
Provides an overview of the types, features, and benefits of designing with cellular PVC trim, including a discussion on the installation guidelines and manufacturing processes.
https://redirect.aecdaily.com/s5023/www.aecdaily.com/course/1009062
Protected roof membrane assemblies (PRMAs), and vegetative roof assemblies (VRAs) in particular, place extreme requirements on the components below the surface, from waterproofing to insulation and everything in between. Each element must meet specific standards for energy efficiency and durability. This course reviews the benefits and design considerations of VRAs. It also describes the high-performance attributes of VRA components and defines the building code/performance standards and best specification practices for optimal fire, wind, thermal, and moisture performance.
🍪 We use cookies to offer you a better browsing experience, analyze site traffic, personalize content, and serve targeted advertisements. Read about how we use cookies and how you can control them by clicking here. Click "cookie settings" to adjust your preferences.