Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 184 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    This course is designed to help the commercial building team understand how to best use new products introduced into the market for building enclosures. These innovative products and systems assist in combining multiple steps of a traditional commercial exterior assembly, such as structure, fire, water, air, thermal, vapor, and acoustic control layers, into fewer steps. The course reviews various hybridized sheathing solutions and shows how the integration of advanced technology has improved performance, capability, and sustainability.

  • ( ~ 1 hour ) 

    In applications where wood may be exposed to moisture, insects, or fungal organisms, preservative-treated wood can ensure a project’s durability. This course reviews: the manufacturing process for pressure-treated wood; types of preservative treatments and the required levels of retention as dictated by the end-use application, desired service life, and exposure conditions; American Wood Protection Association (AWPA) Use Category standards; current issues concerning preserved wood in residential and commercial construction; and Best Management Practices (BMPs) for aquatic uses.

  • ( ~ 1 hour, 15 minutes ) 

    An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.

  • ( ~ 1 hour ) 

    The increase in building energy efficiency requirements has led to the use of exterior continuous insulation (CI) to improve the performance of the building envelope. This presentation reviews the benefits of polyiso continuous insulation and then examines in detail the NFPA 285 test standard and fire safety requirements of the 2021 International Building Code for the use of polyisocyanurate insulation in exterior walls of commercial buildings (Construction Types I–IV).

  • ( ~ 1 hour ) 

    Urban warming negatively impacts human health and quality of life, energy use, air quality, social equity, and economic prosperity. This course describes how solar reflective cool roof and wall materials help protect individuals and communities from the impacts of extreme heat and discusses the factors that influence energy savings and performance. The course also notes various climate resilience initiatives, green building programs, and energy codes that require or promote the use of cool roofs or walls and concludes by explaining the important role of third-party product ratings and the educational resources available online.

  • ( ~ 1 hour ) 

    New technology and improvements in masonry veneer installation can help your team save time and money in the construction process while providing superior results. In this course, you'll learn how cutting-edge technology is helping masons move beyond traditional lath and scratch and be introduced to the principles behind enhanced masonry veneer installation systems (EMVIS). Learn how to create permanent, high-strength installations for residential, commercial, and industrial applications using EMVIS with fortified mortars and innovative waterproofing barrier membranes that protect against air and water penetration.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

  • ( ~ 1 hour ) 

    Protected membrane roof (PMR) assemblies have been widely adopted in low-slope commercial buildings since the late 1960s. Also known as inverted or upside-down roofs, PMR assemblies move the waterproofing membrane from the top of the roof assembly to the surface of the structural deck. This course explores how PMR assemblies provide several advantages over conventional roof assemblies, offering superior protection against water penetration and enhanced energy efficiency. The course also shows how PMR assemblies allow for the creation of green roofs or blue roof systems. With a proven record of reliability, PMR assemblies present a compelling solution for architects seeking innovative, sustainable, and efficient roofing options.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour ) 

    Various control strategies are used to prevent rain from penetrating a building envelope and entering a building assembly. This course compares exterior wall metal cladding systems and takes an in-depth look at the design options, testing, specifications, environmental implications, and the detailing of single-skin metal panel systems as used in a pressure-equalized rainscreen (PER) application.

  • ( ~ 1 hour ) 

    When the asphalt fumes, open flame, and kettles that accompany hot-applied roofing are not permissible, cold-applied roofing is an option. There are a variety of types of cold-applied roofing that offer easy portability of materials to the roof, smaller roofing crews, ease of application, and a low-VOC option. In this course, we focus on the adhesive application of modified bitumen membranes using bituminous cold-process adhesives, the adhesive types, their components and characteristics, application methods, and design and use considerations.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.

  • ( ~ 1 hour ) 

    This course explains the NFPA 285 test method, its origin, its procedures, when it is required, and design considerations necessary for compliance. Criteria in ASHRAE 90.1 for continuous insulation and air/water-resistive barriers are reviewed and identified as contributors to the rise of NFPA 285 requirements. The course also addresses code compliance in light of recent material changes, code changes, and additional testing.

  • ( ~ 1 hour, 30 minutes ) 

    There is no substitute for the natural beauty of newly installed tropical hardwood, but keeping it looking great and achieving the desired performance over time require careful attention to detail. Choosing the best hardwood species and specifying the appropriate fastening and finishing systems will ensure an aesthetically pleasing, low-maintenance, and successful design in terms of installation, performance, and appearance. This course discusses wood species specification, installation techniques, and finishing methods for tropical hardwoods in conventional and sustainable buildings. As well, international programs that are used to successfully determine sustainability are examined.

  • ( ~ 1 hour ) 

    Redwood Timbers are a safe, strong, and sustainable option for exterior and interior building projects where natural wood is desired. This course provides an overview of the properties of Redwood Timbers including insulation properties, grades, dimensions, fasteners, finishing options, and strength. It concludes with numerous case studies exploring the use of Redwood Timbers for post and beam construction, decorative elements, deck posts, and outdoor living structures.

  • ( ~ 1 hour ) 

    A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.

  • ( ~ 1 hour ) 

    Precast concrete pavers and roof deck systems enable designers to deliver on aesthetics and design objectives while achieving safety and durability requirements. Patented roof deck systems allow for the creation of safe and stable roof deck patios and green roofs that maintain sustainability requirements. This course examines the raw materials used in these systems, reviews the different finishes available, and discusses different paver applications and their methods of installation.

  • ( ~ 1 hour ) 

    Ensuring a building’s roof is waterproof, on top of being structurally sound, is critical to the success of any building project. This course examines rapid curing, polymeric liquid-applied waterproofing membranes for roofing and other demanding applications. Discussions include the history of PMMA, PMMA system components and characteristics, the installation process, and the versatility of PMMA products.

  • ( ~ 1 hour ) 

    Lightweight, prefinished, and factory-fabricated insulated metal panels (IMPs) offer building owners a durable, cost-efficient, and easy-to-install roofing system that provides an air barrier, vapor barrier, and insulation all in one product. This course discusses the characteristics of IMPs and the installation process and explains why IMPs are ideally suited for pre-engineered and structural steel buildings. The role of IMPs in a building’s hygrothermal control layers and IMP code compliance are reviewed.

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    Insulated vinyl siding, known as insulated siding, is an exterior cladding that combines the protection and low maintenance of traditional vinyl siding with the energy efficiency of EPS foam. The composite results in an improvement in performance and aesthetics. This course discusses the benefits associated with installing insulated siding on new and renovation residential construction projects, and the range of architectural styles that can be achieved with the breadth of design and color options available.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour ) 

    The construction industry has experienced a significant increase in moisture-related problems in exterior walls. This presentation explains how a rainscreen wall system prevents moisture accumulation within walls by providing a means for drainage and ventilation, thereby prolonging the life of buildings. Discussion topics include air and moisture movement in the building envelope, building code and water-resistive barriers, and stucco and thin veneers in rainscreen systems.

  • ( ~ 1 hour ) 

    The surface coating is the first line of defense in prepainted metal, and one of the most important elements to consider as part of a metal purchase. Selecting the right coating, finish, and paint system can affect product lifespan, energy efficiency, and aesthetic appeal. This course discusses the composition of prepainted metal, its application and performance, and examines the building and environmental factors that may influence the type of paint system specified.

Displaying 1 - 25 of 184 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST