Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Today’s business environment presents significant challenges for commercial roofing systems. Shortages and disruptions in the supply chain, coupled with a diminishing labor force, have led to uncertainty, inflation, and scheduling difficulties for many projects. However, these challenges also open doors for innovative solutions. This course explores the financial and environmental advantages of using a PVC roofing system. It also highlights the benefits of choosing a roofing system from a single supplier.

  • ( ~ 1 hour ) 

    Moisture and soil gas beneath concrete slabs can cause a myriad of problems in both residential and commercial applications. The causes and consequences of these problems are reviewed in this course, along with a discussion on the types and characteristics of under-slab water vapor and soil gas barriers.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    Designing beautiful, sustainable, high-performance buildings can help your structures leave a lasting impression and positive impact. Insulating concrete forms (ICFs) accomplish that while providing innovative design possibilities for single or multistory projects. Learn about the features and advantages of building with ICFs designed as a cost-effective, energy-efficient solution that offers substantial benefits over traditional construction methods.

  • ( ~ 1 hour ) 

    Understanding building physics is critical to proper building envelope design. Examined here are practical concepts for the building designer, including how cladding systems perform across different climate zones and applications. Environmental control layers and hygrothermal loads are reviewed, as is the concept of perfect/universal wall design. The course focuses on how single-component insulated metal panels (IMPs) function as a perfect/universal wall, simplifying wall system design and installation.

  • ( ~ 1 hour ) 

    Curved elements, such as walls, ceilings, columns, soffits, light covers, clouds, and arches have often been used to add interest to architectural designs. This course outlines conventional methods of framing curves in wood and steel, as well as new methods of framing using flexible track systems. Discussions include options for wall coverings and trims for curved surfaces.

  • ( ~ 1 hour ) 

    The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.

  • ( ~ 1 hour ) 

    The 2022 Inflation Reduction Act shines a light on how low-carbon building material selection is one of the keys to reducing greenhouse gas emissions in the US. High-performance, sustainable products and thoughtful assemblies designed with the building life cycle in mind are critical to the future of our sustainable communities. This course provides a look at how low-carbon and sustainability considerations are activated from product to building design. Factors impacting a sustainable building life cycle are discussed to help architects and owners with building performance that meets the design intent not just on paper but also in use.

  • ( ~ 1 hour ) 

    Various control strategies are used to prevent rain from penetrating a building envelope and entering a building assembly. This course compares exterior wall metal cladding systems and takes an in-depth look at the design options, testing, specifications, environmental implications, and the detailing of single-skin metal panel systems as used in a pressure-equalized rainscreen (PER) application.

  • ( ~ 1 hour, 15 minutes ) 

    There are a multitude of building envelope products used and a variety of methods taken for achieving energy and building code requirements. Understanding the different roles a product plays in the envelope simplifies its design. In this course, we take a look at the code requirements for buildings classified as IBC Types I–IV, paths to achieving compliance, and the number of roles polyisocyanurate insulation plays in meeting these requirements.

  • ( ~ 1 hour ) 

    Structural laminated decking allows the beauty of the wood structure to be exposed, creating a unique architectural experience for its occupants. Aesthetics, strength, and durability are combined in one engineered product. Structural laminated wood decking is an environmentally sustainable and cost-effective alternative to solid timber and other roof systems. This course discusses the characteristics of laminated wood decking and reviews recommended design, specification, and installation practices.

  • ( ~ 1 hour, 15 minutes ) 

    Due to their durability, low operational cost, and sustainability, metal roofs are gaining popularity in both commercial and residential markets. Owner expectations for this product family have increased as well and now include heightened aesthetics and long-term performance. While metal roofing systems are certainly up to these challenges, when they fail, the results are costly. Consequently, it is imperative designers have full knowledge of metal roof design and detailing. This course covers the top ten problems metal roof designers face and describes how these problems can be prevented through proper design.

  • ( ~ 1 hour ) 

    Today’s building professionals seeking better moisture management and energy efficiency from the exteriors of their projects are turning to rainscreens as a solution to both. Wood-plastic composite (WPC) provides a durable and long-lasting material suitable for use in rainscreen systems, decks, railings, and more. Reviewed in this course are the manufacturing process, performance and green benefits, and installation of WPC cladding that is fully capped with a polymeric plastic “shield,” providing long-term resistance to moisture, staining, and fading.

  • ( ~ 1 hour ) 

    Thermally controlled environments such as cold storage freezers and coolers, and food processing and packaging facilities take many different forms. Their performance and functionality depend on their project-specific requirements and can be affected by the conditions the materials and systems are subjected to. This course discusses how insulated metal panels (IMPs) perform the necessary functions to provide an effective energy-efficient building envelope and why they are suitable for use within temperature-controlled hygienic environments—where performance is critical.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour, 15 minutes ) 

    Anytime a facility has people working on a roof, their safety and protection must be the priority. Even under the best conditions, working on a rooftop is dangerous due to the roof’s elevation, slope, and edge, as well as other hazards created by weather conditions, electricity, and power tools. This course reviews the hazards of the rooftop environment and the relevant Occupational Safety and Health Administration (OSHA) regulations to aid designers, property owners, and facility managers in selecting safe access and fall protection systems for their buildings.

  • ( ~ 1 hour ) 

    Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.

  • ( ~ 1 hour ) 

    Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.

  • ( ~ 1 hour ) 

    Sustainable building envelopes demand high performance from and proper installation of continuous insulation and air, water, and vapor control layers. What happens when thousands of holes are made in these materials as they are installed with blind fasteners, one layer on top of another by different subcontractors? Sequencing issues can generally not be avoided; instead, this course focuses on self-sealing fasteners as a solution to avoid damage and thermal bridging in insulation and control layers. Various fasteners and anchors are described, and recommendations are presented for how to specify and what testing data to look for.

  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.

  • ( ~ 1 hour ) 

    The use of sustainable materials and products during building design will become the standard within the construction industry, and environmental product declarations (EPDs) and Health Product Declarations (HPDs) help architects and owners make informed decisions for their projects. Insulated metal panels— a prime example of a sustainable product—are one of the most cost-effective solutions to reduce energy and greenhouse gases.

  • ( ~ 1 hour ) 

    Lightweight, prefinished, and factory-fabricated insulated metal panels (IMPs) offer building owners a durable, cost-efficient, and easy-to-install roofing system that provides an air barrier, vapor barrier, and insulation all in one product. This course discusses the characteristics of IMPs and the installation process and explains why IMPs are ideally suited for pre-engineered and structural steel buildings. The role of IMPs in a building’s hygrothermal control layers and IMP code compliance are reviewed.

  • ( ~ 1 hour, 15 minutes ) 

    An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.

  • ( ~ 1 hour ) 

    Roof and floor hatches offer practical solutions for improving accessibility, safety, and functionality in residential, commercial, and industrial buildings. They must be designed and specified to provide safe access to rooftops and below-ground spaces to facilitate maintenance, inspections, equipment installations, and more. The specification considerations for roof, floor, and skylight hatches are presented here. Discussions include size considerations, material options, types of operation, safety features, loads, and thermal, fire, and acoustic performance.

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST