Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.

  • ( ~ 1 hour ) 

    The increase in building energy efficiency requirements has led to the use of exterior continuous insulation (CI) to improve the performance of the building envelope. This presentation reviews the benefits of polyiso continuous insulation and then examines in detail the NFPA 285 test standard and fire safety requirements of the 2021 International Building Code for the use of polyisocyanurate insulation in exterior walls of commercial buildings (Construction Types I–IV).

  • ( ~ 1 hour ) 

    Designing to accommodate thermal movement is just one of the many critical details for the long-term success of a metal roof installation. This course covers the design and specification considerations and architectural details that impact project requirements, as well as the components and the energy-efficient features of metal roofing assemblies.

  • ( ~ 1 hour ) 

    Insulated vinyl siding, known as insulated siding, is an exterior cladding that combines the protection and low maintenance of traditional vinyl siding with the energy efficiency of EPS foam. The composite results in an improvement in performance and aesthetics. This course discusses the benefits associated with installing insulated siding on new and renovation residential construction projects, and the range of architectural styles that can be achieved with the breadth of design and color options available.

  • ( ~ 1 hour ) 

    Installing snow retention systems on rooftop applications improves the safety of building occupants and can decrease the risk of property damage. This course identifies different snow guard styles and explains how each contributes to snow retention. Installation techniques are reviewed, and layout designs that maximize occupant safety and minimize hazards are also discussed.

  • ( ~ 1 hour, 15 minutes ) 

    Metal is a versatile building material, boasting both historical credentials and modern aesthetics. To earn the right to rise to the top as the material of choice, however, metal must also demonstrate cost efficiency, durability, and minimal environmental impact. In this course, we will examine the value of metal roofs and walls during initial construction and through a building’s life cycle and illustrate metal’s benefits with a number of case studies.

  • ( ~ 1 hour, 15 minutes ) 

    As interest in cross-laminated timber (CLT) buildings grows, the market for building enclosure products as a whole has yet to fully provide the water-resistant barriers, vapor retarders, and air barriers to optimally support the unique characteristics of wood. Furthermore, there are few building enclosure design guides specific to detailing wood-framed walls and roofs. This comprehensive course fills the gaps, providing detailed information on mass timber, building enclosure issues, the vapor-permeable technology available to address wood’s unique moisture characteristics, and a how-to guide on detailing the walls and roof of the enclosure.

  • ( ~ 1 hour ) 

    The primary purpose of a roof is to provide shelter and protection; to do so effectively over the long term, proper drainage and ventilation are required. Presented here are the categories of metal roofing, the moisture- and noise-related issues associated with architectural metal roofs, the use of a three-dimensional drainage and ventilation mat as a solution to these issues, and best practices for incorporating a mat in metal and cedar roof assemblies.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour ) 

    Standing seam metal roofing has been used successfully in the United States for centuries, and proper specification is key to realizing its intended performance. Examined here are: the factors driving the demand for standing seam metal roof and wall systems; standing seam panel basics; gauge and grade; oil canning; specification considerations; testing standards; and forming, delivery, storage, handling and warranty.

  • ( ~ 1 hour ) 

    Concrete is an essential part of modern buildings. As net zero energy buildings become more common, it is crucial to find ways to reduce concrete’s carbon footprint without losing the performance characteristics that make it valuable to the building team. This course explains the sources of concrete’s carbon footprint and explores strategies for reducing embodied carbon and operational carbon in precast sandwich wall panels and insulated architectural cladding.

  • ( ~ 1 hour ) 

    Composite roofing materials have been available for over a decade, providing a cost-effective alternative to traditional slate and shake roofing systems. In this course, design professionals can thoroughly explore the sustainable and versatile characteristics of composite roofing solutions. Also discussed are the benefits of composite roofing systems, such as their long life cycle, durability, and adaptability for various applications and environments.

  • ( ~ 1 hour ) 

    In this video series course, we cover common metal roofing installation considerations. The first video discusses typical metal roof penetrations and details for proper installation. The second video presents metal enhancement options and design and installation tips to prevent premature corrosion in marine environments. The final video explores the expansion and contraction of standing seam metal roofs and how points of fixity accommodate thermal movement.

  • ( ~ 1 hour ) 

    Vinyl membrane decking can prolong the life cycle of various building components; however, performance and durability depend on vinyl membrane selection, specification, and installation. Fortunately, vinyl membrane manufacturers can support architects, contractors, and specifiers through all phases of the project to ensure a successful outcome. This course examines walkable, waterproof roof deck membranes and roofing systems and includes discussions on system characteristics, design considerations, and how to properly specify roof deck membrane systems. 

  • ( ~ 1 hour ) 

    Water and moisture intrusion can affect everything from a building’s structural durability to its indoor air quality. Understanding the material options, installation, and testing criteria for high-performing weather-resistant barriers (WRBs) can help specifiers manage present and future moisture concerns.

  • ( ~ 1 hour ) 

    Moisture and soil gas beneath concrete slabs can cause a myriad of problems in both residential and commercial applications. The causes and consequences of these problems are reviewed in this course, along with a discussion on the types and characteristics of under-slab water vapor and soil gas barriers.

  • ( ~ 1 hour ) 

    Architectural metal panels (AMPs) provide exceptional design versatility, enhancing both the aesthetics and functionality of a building. This course explores different types of panels, their applications, finishes, key design and specification considerations, and best practices to ensure the durability and performance of the panel system. Additionally, several project examples are presented to showcase the creative applications of AMP systems.

  • ( ~ 1 hour ) 

    The building envelope is the physical separator between the conditioned and unconditioned environment of a building and provides resistance to air, water, heat, light, and noise transfer. As a thermal barrier, spray polyurethane foam (SPF) offers numerous opportunities to contribute to building envelope performance and indoor air quality in several project types. This course presents the sustainable aspects of SPF, SPF fire and strength testing, and the benefits of SPF in below- and above-grade and rooftop applications.

  • ( ~ 1 hour ) 

    Single-family attached residences (residences that share one or more walls between neighbors) are required to utilize area separation walls between units. A key design criterion of any firewall—besides its fire rating—is that it be structurally independent in a fire. This course evaluates two-hour fire-resistance-rated walls used in single-family attached and multifamily residential construction, the options available in today’s marketplace, firewall installation requirements, and fire-resistance testing.

  • ( ~ 1 hour ) 

    Roof underlayments play a vital role in enhancing roof durability by preventing moisture intrusion and extending the life of the roofing system. This course compares traditional felt roof underlayments with modern synthetic roof underlayments across various parameters and discusses ASTM standards and material testing. The course examines the four critical performance factors that influence product selection and concludes with a checklist of items to address to ensure the appropriate underlayment is specified.

  • ( ~ 1 hour, 15 minutes ) 

    According to building professionals, the solution to achieving an energy-efficient building envelope is to focus more on the roof. Protected membrane roof (PMR) assemblies deliver thermal efficiency and can play a valuable role in a sustainable design strategy. Presented in this course is a review of the components, advantages, ballast options, and design and installation considerations of PMR assemblies.

  • ( ~ 1 hour, 30 minutes ) 

    The key to an energy-efficient metal building is the implementation of a continuous insulation system that virtually eliminates thermal bridging and prevents condensation. This course discusses how using thermal spacer blocks and metal building insulation in the building envelope increases energy performance, protects against condensation, and meets stringent energy code requirements.

  • ( ~ 1 hour ) 

    Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.

  • ( ~ 1 hour ) 

    Precast concrete pavers and roof deck systems enable designers to deliver on aesthetics and design objectives while achieving safety and durability requirements. Patented roof deck systems allow for the creation of safe and stable roof deck patios and green roofs that maintain sustainability requirements. This course examines the raw materials used in these systems, reviews the different finishes available, and discusses different paver applications and their methods of installation.

  • ( ~ 1 hour, 15 minutes ) 

    Insulation can help increase overall energy efficiency, minimize the spread of fire, manage risks associated with moisture and mold, and improve occupant comfort. Choosing the right insulation and putting it in the right location is becoming one of the most important decisions in design, construction, and retrofit. Reviewed in this course are the features, benefits, and design and installation considerations related to mineral wool continuous insulation.

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST