Building Knowledge and Connections
Displaying 1 - 25 of 182 results.
Scan this code with your mobile device camera to take this page on-the-go!
https://redirect.aecdaily.com/s1109995/www.aecdaily.com/course/1132345
Metal is a versatile building material, boasting both historical credentials and modern aesthetics. To earn the right to rise to the top as the material of choice, however, metal must also demonstrate cost efficiency, durability, and minimal environmental impact. In this course, we will examine the value of metal roofs and walls during initial construction and through a building’s life cycle and illustrate metal’s benefits with a number of case studies.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/1091539
Protected membrane roof (PMR) assemblies have been widely adopted in low-slope commercial buildings since the late 1960s. Also known as inverted or upside-down roofs, PMR assemblies move the waterproofing membrane from the top of the roof assembly to the surface of the structural deck. This course explores how PMR assemblies provide several advantages over conventional roof assemblies, offering superior protection against water penetration and enhanced energy efficiency. The course also shows how PMR assemblies allow for the creation of green roofs or blue roof systems. With a proven record of reliability, PMR assemblies present a compelling solution for architects seeking innovative, sustainable, and efficient roofing options.
https://redirect.aecdaily.com/s3379/www.aecdaily.com/course/916307
The building envelope must withstand the effects of long-term exposure to the elements. This course explores rainscreen wall design and the control of hygrothermal loads. The traditional multicomponent backup wall assembly is compared with the single-component, insulated metal composite backup wall system, outlining key differences in design and construction and their overall effect on installation and performance.
https://redirect.aecdaily.com/s8761/www.aecdaily.com/course/1009286
New technology and improvements in masonry veneer installation can help your team save time and money in the construction process while providing superior results. In this course, you'll learn how cutting-edge technology is helping masons move beyond traditional lath and scratch and be introduced to the principles behind enhanced masonry veneer installation systems (EMVIS). Learn how to create permanent, high-strength installations for residential, commercial, and industrial applications using EMVIS with fortified mortars and innovative waterproofing barrier membranes that protect against air and water penetration.
https://redirect.aecdaily.com/s9727/www.aecdaily.com/course/811766
Thermally controlled environments such as cold storage freezers and coolers, and food processing and packaging facilities take many different forms. Their performance and functionality depend on their project-specific requirements and can be affected by the conditions the materials and systems are subjected to. This course discusses how insulated metal panels (IMPs) perform the necessary functions to provide an effective energy-efficient building envelope and why they are suitable for use within temperature-controlled hygienic environments—where performance is critical.
https://redirect.aecdaily.com/s719/www.aecdaily.com/course/1020058
As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.
https://redirect.aecdaily.com/s2426/www.aecdaily.com/course/661015
Insulating concrete form (ICF) products use a cost-effective and robust structural material option (reinforced concrete) to turn a building envelope into a high-performing thermal, moisture, and air enclosure with disaster resistance and built-in compliance with energy code requirements. As a result of ICF performance, building owners can complete a whole structure with ICFs and reinforced concrete, including intermediate suspended floors, rooftops, and multistory designs. This course examines the advancements in ICF technology and discusses the potential contribution of ICFs to supporting improved sustainability and resilience.
https://redirect.aecdaily.com/s19863/www.aecdaily.com/course/1077571
Firestopping is the process of sealing openings around penetrants or in joints or gaps between fire-rated assemblies to restore hourly fire resistance ratings. It is a critical part of fire containment and a balanced fire and life safety plan. This course outlines resources and code requirements that architects and designers should be aware of while preparing specifications for firestop systems in their projects. The course also reviews common mistakes to avoid.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/1091510
Understanding the performance of building materials in real-world conditions is key to a successful building design. Recent studies have shown that the commonly reported R-values of polyisocyanurate foams at room temperature may overstate their real-world performance in cooler temperatures, potentially resulting in gaps in designed building enclosure assembly performance and quality. Through a theoretical framework and empirical data, this course shows that optimized polyisocyanurate foam insulation results in better performance, leading to improved energy savings and reduced potential for condensation. Participants are encouraged to explore innovative insulation materials, understand differences between them, and match optimal materials to specific applications while meeting modern construction codes and regulations. By matching the right insulation materials to the application, architects can contribute to energy-efficient and cost-conscious construction practices and help buildings reduce their impact on the environment.
https://redirect.aecdaily.com/s5533/www.aecdaily.com/course/1121832
Wind load can significantly impact buildings, affecting their structural integrity and safety. Perimeter roof edge systems are a primary safeguard during strong wind events. This course provides an overview of the types, features, and benefits of perimeter roof edge systems, system selection considerations, the impact of wind uplift on roofs, and the building codes and testing standards applicable to perimeter roof edge systems.
https://redirect.aecdaily.com/s17339/www.aecdaily.com/course/829062
Rooftop decks create valuable living and recreational space for building owners, residents, and clients. Accommodating restaurants, hotels, healthcare facilities, and everything from residential to government buildings, rooftop deck systems offer the design flexibility to create versatile, unique outdoor spaces over any structural surface. This course explores the features, surface materials, and design options for rooftop deck systems and provides an overview of recommended planning and installation guidelines.
https://redirect.aecdaily.com/s10541/www.aecdaily.com/course/1012800
Masonry wall types have evolved from self-supporting mass walls to cavity walls and veneers that require wall ties or anchors. Over time, anchors can fail and masonry wall systems can become unstable and require repair. This course discusses how to recognize unstable façades, how retrofit anchors can be used to repair these instabilities, the different types of anchors available, and how to determine the proper repair procedure.
https://redirect.aecdaily.com/s5023/www.aecdaily.com/course/1009062
Protected roof membrane assemblies (PRMAs), and vegetative roof assemblies (VRAs) in particular, place extreme requirements on the components below the surface, from waterproofing to insulation and everything in between. Each element must meet specific standards for energy efficiency and durability. This course reviews the benefits and design considerations of VRAs. It also describes the high-performance attributes of VRA components and defines the building code/performance standards and best specification practices for optimal fire, wind, thermal, and moisture performance.
https://redirect.aecdaily.com/s2955/www.aecdaily.com/course/890369
An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.
https://redirect.aecdaily.com/s356556/www.aecdaily.com/course/1042076
This introductory course on spray polyurethane foam (SPF) covers component chemistry, different types of SPF, and the proper use of SPF in construction applications. In addition, the course addresses code compliance related to SPF for residential and commercial construction, as well as safe SPF installation practices. Participants will come away with a strong knowledge of how the proper use and application of spray foam can improve the indoor environment and the durability of the built environment.
https://redirect.aecdaily.com/s421150/www.aecdaily.com/course/925438
Moisture and soil gas beneath concrete slabs can cause a myriad of problems in both residential and commercial applications. The causes and consequences of these problems are reviewed in this course, along with a discussion on the types and characteristics of under-slab water vapor and soil gas barriers.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/1065274
This course is designed to help the commercial building team understand how to best use new products introduced into the market for building enclosures. These innovative products and systems assist in combining multiple steps of a traditional commercial exterior assembly, such as structure, fire, water, air, thermal, vapor, and acoustic control layers, into fewer steps. The course reviews various hybridized sheathing solutions and shows how the integration of advanced technology has improved performance, capability, and sustainability.
https://redirect.aecdaily.com/s1039189/www.aecdaily.com/course/1049844
Manufacturers, industry groups, architects, designers, and homeowners all share an expectation of safety in the buildings we occupy and use every day. This course discusses the key chapters where important exterior wall fire provisions can be found in the International Building Code® and examines many common features of global fire incidents. The course also describes the NFPA 285 fire test and discusses the new Annex B in the 2023 edition of NFPA 285. Finally, there is a discussion of the code compliance pathways when exterior walls are required by the IBC® to be tested and comply with NFPA 285.
https://redirect.aecdaily.com/s671/www.aecdaily.com/course/985501
The primary purpose of a roof is to provide shelter and protection; to do so effectively over the long term, proper drainage and ventilation are required. Presented here are the categories of metal roofing, the moisture- and noise-related issues associated with architectural metal roofs, the use of a three-dimensional drainage and ventilation mat as a solution to these issues, and best practices for incorporating a mat in metal and cedar roof assemblies.
https://redirect.aecdaily.com/s427660/www.aecdaily.com/course/749008
With the demand for sustainable power on the rise, building owners and homeowners alike are turning to solar power as a supplemental power generator. Choosing the right platform for the solar panels is a critical step in the design process and can have a significant impact on both initial and long-term costs. This course discusses the basics of photovoltaic systems, including the components and rooftop applications. Comparisons between traditional roofing and standing seam metal roofing platforms are examined, and the benefits of a nonpenetrating clamping system are discussed.
https://redirect.aecdaily.com/s15796/www.aecdaily.com/course/626474
Historically, traditional waterproofing methods involve the placement of a barrier or membrane between the concrete and water. Unlike membranes and other surface systems, crystalline waterproofing is designed to make the concrete itself waterproof. This course discusses how crystalline waterproofing technology provides a high level of performance to concrete structures and what design professionals need to know in order to specify and understand how this chemical technology can improve building projects, cut costs, and help earn LEED® credits.
https://redirect.aecdaily.com/s5023/www.aecdaily.com/course/924606
One of the most complex and least understood areas where fire can propagate is at the perimeter of a multistory building. Fire can spread not only from floor to floor via the edge-of-slab/curtain wall intersections but also along the exterior building enclosure where untested, combustible components are often installed. This program outlines best design practices for providing fire protection for building occupants per ASTM E2307 and ASTM E2874.
https://redirect.aecdaily.com/s445386/www.aecdaily.com/course/1042506
Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.
https://redirect.aecdaily.com/s681831/www.aecdaily.com/course/870548
Various control strategies are used to prevent rain from penetrating a building envelope and entering a building assembly. This course compares exterior wall metal cladding systems and takes an in-depth look at the design options, testing, specifications, environmental implications, and the detailing of single-skin metal panel systems as used in a pressure-equalized rainscreen (PER) application.
🍪 We use cookies to offer you a better browsing experience, analyze site traffic, personalize content, and serve targeted advertisements. Read about how we use cookies and how you can control them by clicking here. Click "cookie settings" to adjust your preferences.