Building Knowledge and Connections
Displaying 1 - 25 of 182 results.
Scan this code with your mobile device camera to take this page on-the-go!
https://redirect.aecdaily.com/s420795/www.aecdaily.com/course/874439
The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.
https://redirect.aecdaily.com/s5147/www.aecdaily.com/course/1085664
Today’s business environment presents significant challenges for commercial roofing systems. Shortages and disruptions in the supply chain, coupled with a diminishing labor force, have led to uncertainty, inflation, and scheduling difficulties for many projects. However, these challenges also open doors for innovative solutions. This course explores the financial and environmental advantages of using a PVC roofing system. It also highlights the benefits of choosing a roofing system from a single supplier.
https://redirect.aecdaily.com/s20141/www.aecdaily.com/course/1145493
Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.
https://redirect.aecdaily.com/s561226/www.aecdaily.com/course/1199796
Asphaltic-rubber membranes play a crucial role in the successful implementation of below-grade foundation waterproofing by forming a monolithic, flexible layer that protects the foundation and supports its long-term structural integrity. Presented is an overview of dampproofing and waterproofing, preparation requirements for foundation design, hydrostatic pressure, and positive- and negative-side waterproofing. Also discussed are the design of below-grade, vertical foundation waterproofing applications and guidelines for proper specifications. The course compares waterproofing membrane technologies and addresses insulation, drainage, and backfill requirements.
https://redirect.aecdaily.com/s680223/www.aecdaily.com/course/901794
The key to an energy-efficient metal building is the implementation of a continuous insulation system that virtually eliminates thermal bridging and prevents condensation. This course discusses how using thermal spacer blocks and metal building insulation in the building envelope increases energy performance, protects against condensation, and meets stringent energy code requirements.
https://redirect.aecdaily.com/s10851/www.aecdaily.com/course/1141237
Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.
https://redirect.aecdaily.com/s15106/www.aecdaily.com/course/947826
Fenestration openings are a critical component of a building envelope, especially in present-day sustainable, energy-efficient buildings. Building envelopes play an important role in controlling the movement of heat, bulk water, and water vapor. Designing fenestration openings for buildings that use continuous exterior insulation has a significant role in reducing thermal bridging and thus conserving energy. This course reviews the impact of exterior insulation on fenestration installation design. The course also explores solutions for a wide variety of wall system variations.
https://redirect.aecdaily.com/s951401/www.aecdaily.com/course/964377
Today’s building professionals seeking better moisture management and energy efficiency from the exteriors of their projects are turning to rainscreens as a solution to both. Wood-plastic composite (WPC) provides a durable and long-lasting material suitable for use in rainscreen systems, decks, railings, and more. Reviewed in this course are the manufacturing process, performance and green benefits, and installation of WPC cladding that is fully capped with a polymeric plastic “shield,” providing long-term resistance to moisture, staining, and fading.
https://redirect.aecdaily.com/s1092024/www.aecdaily.com/course/1121808
Roof and floor hatches offer practical solutions for improving accessibility, safety, and functionality in residential, commercial, and industrial buildings. They must be designed and specified to provide safe access to rooftops and below-ground spaces to facilitate maintenance, inspections, equipment installations, and more. The specification considerations for roof, floor, and skylight hatches are presented here. Discussions include size considerations, material options, types of operation, safety features, loads, and thermal, fire, and acoustic performance.
https://redirect.aecdaily.com/s12394/www.aecdaily.com/course/1179979
The performance and durability of a roof are critical to the health, welfare, and safety of both building occupants and the building itself. This course examines the construction, materials, and best detailing practices that ensure the proper long-term performance of steep-pitch roofs. It describes and details layout options for assemblies of steep-pitch roofs and the key characteristics of roofing systems that help to prevent roof deterioration and damage. It then highlights best practices in detailing and constructing steep-pitch roof systems that mitigate water, ice, snow, fire, or wind damage to the roof.
https://redirect.aecdaily.com/s775747/www.aecdaily.com/course/815408
For some applications, building codes provide for the use of fire-retardant-treated (FR) wood products as an alternative to noncombustible materials. To ensure that FR wood products are properly specified, it is important to understand how these products are made, their formulations, and the building code references that guide their use in construction. This course offers a review of FR wood products, including their manufacture, the applications and types of fire retardants that are available, and the factors that must be considered to ensure FR wood products are properly specified for code compliance.
https://redirect.aecdaily.com/s20151/www.aecdaily.com/course/1002626
Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.
https://redirect.aecdaily.com/s20276/www.aecdaily.com/course/957452
Architectural metal fabric is a dynamic interior and exterior material used to create beautiful and functional façades, balustrades, and screening for a wide variety of commercial and public structures. This course discusses applications for metal fabric and its performance benefits, including safety, security, solar management, and sustainability. It also discusses how coatings and graphics technologies can be incorporated into metal fabrics to enhance branding and visual identity.
https://redirect.aecdaily.com/s624574/www.aecdaily.com/course/1025181
While frequently chosen for aesthetics and durability, clay brick is not often considered when energy efficiency is a primary concern, even though it historically played a significant role in occupant comfort before the widespread use of HVAC systems. This course discusses the basics of heat transfer, relevant energy code provisions for walls, and how current research by the National Brick Research Center demonstrates the role that brick veneer can play in meeting or exceeding energy requirements in modern wall assemblies.
https://redirect.aecdaily.com/s686798/www.aecdaily.com/course/884142
Ensuring proper use of methods and materials allows masonry walls to perform well and enjoy a long life. Use of masonry joint reinforcement and accessories is an essential part of this. This course provides a brief history of solid masonry walls leading up to the modern cavity walls of today, including a discussion of the basic working knowledge of masonry joint reinforcing, structural codes, and moisture control in cavity wall construction.
https://redirect.aecdaily.com/s987165/www.aecdaily.com/course/1043405
Wind forces always influence building design and detailing. This course focuses on one particular force, wind uplift, and its influence on roof paving system design and selection. It examines how wind loads and building configuration affect the design of roof paving systems; the codes, regulations, and calculation approaches that inform and control such designs; and the various options designers can use to design safe, appealing outdoor roof paving systems that will withstand even the strongest winds.
https://redirect.aecdaily.com/s1009358/www.aecdaily.com/course/1034437
Paint in its various forms is an older material whose composition has constantly evolved, even in modern times. This evolution has included the identification and removal of certain hazardous ingredients. Similarly, paint removers have also evolved and improved their ability to deal with a wide range of old and new paint formulas while remaining safe for the occupant, the worker, and the environment at large. This course examines state-of-the-art nontoxic paint removers that are effective in removing as many as thirty coats of paint in one safe and efficient operation.
https://redirect.aecdaily.com/s3379/www.aecdaily.com/course/826168
Understanding building physics is critical to proper building envelope design. Examined here are practical concepts for the building designer, including how cladding systems perform across different climate zones and applications. Environmental control layers and hygrothermal loads are reviewed, as is the concept of perfect/universal wall design. The course focuses on how single-component insulated metal panels (IMPs) function as a perfect/universal wall, simplifying wall system design and installation.
https://redirect.aecdaily.com/s9572/www.aecdaily.com/course/953062
One of the more complicated issues today in building science is addressing moisture movement, since moisture can penetrate a building in several different ways and result in material degradation, air quality issues, and failure of the building enclosure. This course examines the ways moisture can enter a structure and discusses the role of different moisture control layers that, when correctly placed and installed, can prevent unwanted moisture infiltration.
https://redirect.aecdaily.com/s356556/www.aecdaily.com/course/1054861
No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.
https://redirect.aecdaily.com/s10015/www.aecdaily.com/course/819523
The beautiful gray patina of zinc architectural metal has graced the rooftops of buildings in Europe for hundreds of years. This course examines the sustainable characteristics of zinc as a roofing material, including its 100% recyclability, zero VOC requirement, and low embodied energy production process. The life cycle analysis of zinc is examined, as is zinc’s long-term service life. Various types of roof and wall applications are also discussed.
https://redirect.aecdaily.com/s8170/www.aecdaily.com/course/1137958
As more companies invest in solar to generate clean power for their operations, meet environmental goals, or save money on electrical bills, architects and building owners may need to be prepared to accommodate rooftop photovoltaic (PV) systems in both existing and new buildings. This course provides an introduction to rooftop PV systems, including a discussion of modules, components, and attachments, and best practices for a durable roof and PV system.
https://redirect.aecdaily.com/s18795/www.aecdaily.com/course/787410
A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.
https://redirect.aecdaily.com/s3379/www.aecdaily.com/course/917631
Exterior wall systems are the dividing line between the exterior and the interior and must address several fundamental performance goals of the building envelope. This course reviews traditional rainscreen design and examines why, with its single-component construction, an insulated composite backup wall system is a vast improvement over traditional multicomponent building technology.
https://redirect.aecdaily.com/s624574/www.aecdaily.com/course/1056832
Typically, all the brick selected for a given project will be either full bed depth (anchored) or thin brick (adhered); however, situations may benefit from combining the two types of masonry veneer on a project. The intent of this course is to differentiate between the types of brick masonry veneer, discuss the unique detailing required when combining veneer types, and provide project examples demonstrating where both types of masonry veneer have been successfully integrated. This course will focus on exterior applications of anchored and adhered masonry veneer.
🍪 We use cookies to offer you a better browsing experience, analyze site traffic, personalize content, and serve targeted advertisements. Read about how we use cookies and how you can control them by clicking here. Click "cookie settings" to adjust your preferences.