Building Knowledge and Connections
Displaying 1 - 25 of 181 results.
Scan this code with your mobile device camera to take this page on-the-go!
https://redirect.aecdaily.com/s12454/www.aecdaily.com/course/969706
Exterior shading devices offer a number of advantages that contribute to a more sustainable building, including minimizing cooling costs, reducing peak electricity demand, and controlling glare. These benefits result in greater occupant comfort and improved productivity. This course provides a review of exterior aluminum shading device systems, including the components, finishes, and design and engineering considerations, as well as a discussion of how shading strategies contribute to LEED® certification.
https://redirect.aecdaily.com/s2955/www.aecdaily.com/course/890369
An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.
https://redirect.aecdaily.com/s18795/www.aecdaily.com/course/787410
A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.
https://redirect.aecdaily.com/s10541/www.aecdaily.com/course/895029
As some of the earliest building materials, masonry and concrete have been used for their durability and strength. However, masonry architecture, both historical and contemporary, has been left vulnerable to water—the single most damaging element to masonry in our environment. This course identifies common water-related problems for masonry and concrete, describes protective treatments that increase masonry durability, and explains the process for safely selecting and applying a protective treatment.
https://redirect.aecdaily.com/s7816/www.aecdaily.com/course/977173
Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.
https://redirect.aecdaily.com/s1002402/www.aecdaily.com/course/1036036
The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.
https://redirect.aecdaily.com/s1177232/www.aecdaily.com/course/1200826
Roof underlayments play a vital role in enhancing roof durability by preventing moisture intrusion and extending the life of the roofing system. This course compares traditional felt roof underlayments with modern synthetic roof underlayments across various parameters and discusses ASTM standards and material testing. The course examines the four critical performance factors that influence product selection and concludes with a checklist of items to address to ensure the appropriate underlayment is specified.
https://redirect.aecdaily.com/s935649/www.aecdaily.com/course/960004
At their root, metal roofs and walls made from steel, copper, zinc, or aluminum have a lower environmental impact because of their ability to be recycled and reused. This course focuses on the green aspects of standing seam metal roofs, and in particular, their cool roof characteristics. Also addressed are the implications of heat islands, what constitutes construction of cool roofs/walls and how they work, some rules of thumb for understanding cool metal roofing, roof slope impacts on performance, and codes, ratings, and standards that apply to designing cool roofs/walls.
https://redirect.aecdaily.com/s420795/www.aecdaily.com/course/874439
The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.
https://redirect.aecdaily.com/s9572/www.aecdaily.com/course/890325
Critical to concrete waterproofing are the products used in combination to create a system that ensures complete control of moisture migration. Presented here are effective concrete waterproofing technologies and how they improve the durability and lifespan of structures. Discussions include water penetration, system selection, membrane protection, and cementitious waterproofing.
https://redirect.aecdaily.com/s8170/www.aecdaily.com/course/1200510
This course examines the material composition, reinforcement types, and testing standards associated with styrene-butadiene-styrene (SBS) modified bitumen membranes. It explains how fiberglass, polyester, and combination reinforcements affect membrane strength, flexibility, and dimensional stability. The standards that establish testing methods for tensile strength, elongation, and long-term performance are covered in detail. The course also outlines how material selection and installation practices influence roof durability, moisture resistance, and occupant safety.
https://redirect.aecdaily.com/s743103/www.aecdaily.com/course/968006
There is no substitute for the natural beauty of newly installed tropical hardwood, but keeping it looking great and achieving the desired performance over time require careful attention to detail. Choosing the best hardwood species and specifying the appropriate fastening and finishing systems will ensure an aesthetically pleasing, low-maintenance, and successful design in terms of installation, performance, and appearance. This course discusses wood species specification, installation techniques, and finishing methods for tropical hardwoods in conventional and sustainable buildings. As well, international programs that are used to successfully determine sustainability are examined.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/1007786
This course provides an overview of the industry standards and code references for flashing materials used in the installation of windows and doors. The code-referenced material standards for window and door flashings are summarized and compared, and the standard installation practices developed by the three main fenestration industry organizations are reviewed. Applications of the window and door installation standards and principles are shown using standard flashing materials with a focus on commercial and multifamily buildings.
https://redirect.aecdaily.com/s5023/www.aecdaily.com/course/899778
Insulation can help increase overall energy efficiency, minimize the spread of fire, manage risks associated with moisture and mold, and improve occupant comfort. Choosing the right insulation and putting it in the right location is becoming one of the most important decisions in design, construction, and retrofit. Reviewed in this course are the features, benefits, and design and installation considerations related to mineral wool continuous insulation.
https://redirect.aecdaily.com/s379494/www.aecdaily.com/course/1067199
Cellulose insulation has been used successfully by builders and designers for hundreds of years to provide comfort and warmth. Today, builders and designers also consider sustainability principles, climate change, occupant health and wellness issues, energy conservation, and carbon sequestration. Advanced cellulose insulation addresses all those areas as well. This course explains its environmental benefits, including its carbon capture ability, how it improves occupant health and well-being, and its numerous high-performance thermal, acoustic, and fire-resistant attributes.
https://redirect.aecdaily.com/s677063/www.aecdaily.com/course/1104741
Designing beautiful, sustainable, high-performance buildings can help your structures leave a lasting impression and positive impact. Insulating concrete forms (ICFs) accomplish that while providing innovative design possibilities for single or multistory projects. Learn about the features and advantages of building with ICFs designed as a cost-effective, energy-efficient solution that offers substantial benefits over traditional construction methods.
https://redirect.aecdaily.com/s5147/www.aecdaily.com/course/856363
Standing seam metal roofing has been used successfully in the United States for centuries, and proper specification is key to realizing its intended performance. Examined here are: the factors driving the demand for standing seam metal roof and wall systems; standing seam panel basics; gauge and grade; oil canning; specification considerations; testing standards; and forming, delivery, storage, handling and warranty.
https://redirect.aecdaily.com/s2356/www.aecdaily.com/course/957597
Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.
https://redirect.aecdaily.com/s5023/www.aecdaily.com/course/1067507
This course explains the NFPA 285 test method, its origin, its procedures, when it is required, and design considerations necessary for compliance. Criteria in ASHRAE 90.1 for continuous insulation and air/water-resistive barriers are reviewed and identified as contributors to the rise of NFPA 285 requirements. The course also addresses code compliance in light of recent material changes, code changes, and additional testing.
https://redirect.aecdaily.com/s719/www.aecdaily.com/course/1020058
As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.
https://redirect.aecdaily.com/s5147/www.aecdaily.com/course/1085664
Today’s business environment presents significant challenges for commercial roofing systems. Shortages and disruptions in the supply chain, coupled with a diminishing labor force, have led to uncertainty, inflation, and scheduling difficulties for many projects. However, these challenges also open doors for innovative solutions. This course explores the financial and environmental advantages of using a PVC roofing system. It also highlights the benefits of choosing a roofing system from a single supplier.
https://redirect.aecdaily.com/s18795/www.aecdaily.com/course/668974
Rainscreens are a multicomponent system offering redundancy in resisting the weather; however, continuity of each component is critical. When an insulated metal panel (IMP) is used within the system, it can function as a number of these components, simplifying installation and improving performance. This course looks at IMPs acting as barrier walls behind various rainscreen systems, with a discussion on the performance characteristics for air, water, vapor, and thermal management.
https://redirect.aecdaily.com/s661094/www.aecdaily.com/course/686311
Assesses the urban environmental issues of stormwater runoff and heat islands and describes how their damaging impacts can be mitigated by blue, white, and green roofs. The considerations and additional benefits of each roof type are also discussed.
https://redirect.aecdaily.com/s1092062/www.aecdaily.com/course/1134323
Residential solar power generates clean energy, reduces carbon footprint, protects against rising electricity rates, and protects property from outages, but it is only effective during daylight hours. Adding battery storage to a solar system—called solar plus storage—removes this limitation and moves a home closer to energy independence. In this course, we will review the components of a solar-plus-storage system, including selection considerations for residential rooftop solar and DC-coupled solar batteries. The course also reviews the extended system of monitoring and DC charging.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/970291
Uncorrected thermal bridging can account for 20–70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.
🍪 We use cookies to offer you a better browsing experience, analyze site traffic, personalize content, and serve targeted advertisements. Read about how we use cookies and how you can control them by clicking here. Click "cookie settings" to adjust your preferences.