Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Designing beautiful, sustainable, high-performance buildings can help your structures leave a lasting impression and positive impact. Insulating concrete forms (ICFs) accomplish that while providing innovative design possibilities for single or multistory projects. Learn about the features and advantages of building with ICFs designed as a cost-effective, energy-efficient solution that offers substantial benefits over traditional construction methods.

  • ( ~ 1 hour ) 

    Paint in its various forms is an older material whose composition has constantly evolved, even in modern times. This evolution has included the identification and removal of certain hazardous ingredients. Similarly, paint removers have also evolved and improved their ability to deal with a wide range of old and new paint formulas while remaining safe for the occupant, the worker, and the environment at large. This course examines state-of-the-art nontoxic paint removers that are effective in removing as many as thirty coats of paint in one safe and efficient operation.

  • ( ~ 1 hour ) 

    A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.

  • ( ~ 1 hour ) 

    Architects and other design professionals have a critical role to play in reducing global greenhouse gas emissions through building design and product selection. The urgent need to reduce both operational and embodied carbon means that building designers must be familiar with transparency documents that facilitate low-carbon product selection. In this course, we review the types of carbon of concern, transparency documents that provide critical information, and tools for sourcing embodied carbon information. We also look at the contribution of insulated metal panels to both low embodied and low operational carbon buildings.

  • ( ~ 1 hour ) 

    This introductory course on spray polyurethane foam (SPF) covers component chemistry, different types of SPF, and the proper use of SPF in construction applications. In addition, the course addresses code compliance related to SPF for residential and commercial construction, as well as safe SPF installation practices. Participants will come away with a strong knowledge of how the proper use and application of spray foam can improve the indoor environment and the durability of the built environment.

  • ( ~ 1 hour ) 

    Asphaltic-rubber membranes play a crucial role in the successful implementation of below-grade foundation waterproofing by forming a monolithic, flexible layer that protects the foundation and supports its long-term structural integrity. Presented is an overview of dampproofing and waterproofing, preparation requirements for foundation design, hydrostatic pressure, and positive- and negative-side waterproofing. Also discussed are the design of below-grade, vertical foundation waterproofing applications and guidelines for proper specifications. The course compares waterproofing membrane technologies and addresses insulation, drainage, and backfill requirements.

  • ( ~ 1 hour ) 

    Since its introduction in the early 20th century, high-strength fiber cement has proven to be an affordable, sturdy construction material. Technological advances in recent years have increased its versatility in terms of color range and usage for ventilated rainscreen facades. This course examines what high-strength fiber cement is and how it can improve the structural sustainability of buildings and enhance creative freedom in design.

  • ( ~ 1 hour ) 

    The materials we use have a significant impact on the environment, our communities, and our health. Consequently, material transparency—wherein manufacturers disclose vital sustainability information about their products—is an increasingly necessary element of modern life. This course examines the tools and resources that are available for both manufacturers and the A&D community that effectively communicate transparency information and optimization of building products. Also reviewed are the benefits of the new-generation insulated metal panels (IMPs) designed to achieve a trusted range of health and wellness certifications.

  • ( ~ 1 hour ) 

    The use of sustainable materials and products during building design will become the standard within the construction industry, and environmental product declarations (EPDs) and Health Product Declarations (HPDs) help architects and owners make informed decisions for their projects. Insulated metal panels— a prime example of a sustainable product—are one of the most cost-effective solutions to reduce energy and greenhouse gases.

  • ( ~ 1 hour ) 

    A high-performance building envelope, such as one made with architectural insulated metal panels (IMPs), serves as the building’s primary defense against environmental elements and protects the health and well-being of its occupants. This course reviews the components and benefits of IMPs, which offer all four control layers—air, vapor, thermal, and water—within a single component, delivering superior thermal performance and high-end design.

  • ( ~ 1 hour ) 

    Vinyl has long been a material of choice for construction products for interiors and exteriors because of its durability, cleanability, affordability, and suitability for a vast range of applications. This course furthers the conversation by discussing vinyl’s recyclability and sustainability and the attributes of laminated rigid PVC exterior and interior wall panels and siding and soffit products.

  • ( ~ 1 hour ) 

    Learners will receive information about cast stone and how it is made, testing requirements, applications, design recommendations, and how it differs from related materials. Learners will describe appropriate specification, design details of cast stone for architectural applications, and how to determine quality cast stone production.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    Lightweight, prefinished, and factory-fabricated insulated metal panels (IMPs) offer building owners a durable, cost-efficient, and easy-to-install roofing system that provides an air barrier, vapor barrier, and insulation all in one product. This course discusses the characteristics of IMPs and the installation process and explains why IMPs are ideally suited for pre-engineered and structural steel buildings. The role of IMPs in a building’s hygrothermal control layers and IMP code compliance are reviewed.

  • ( ~ 1 hour ) 

    Architectural metal panels (AMPs) provide exceptional design versatility, enhancing both the aesthetics and functionality of a building. This course explores different types of panels, their applications, finishes, key design and specification considerations, and best practices to ensure the durability and performance of the panel system. Additionally, several project examples are presented to showcase the creative applications of AMP systems.

  • ( ~ 1 hour, 15 minutes ) 

    There are a multitude of building envelope products used and a variety of methods taken for achieving energy and building code requirements. Understanding the different roles a product plays in the envelope simplifies its design. In this course, we take a look at the code requirements for buildings classified as IBC Types I–IV, paths to achieving compliance, and the number of roles polyisocyanurate insulation plays in meeting these requirements.

  • ( ~ 1 hour, 15 minutes ) 

    In the wake of the green movement, combined with rising energy costs, building sustainability has become an important topic. This course examines how foil-faced polyisocyanurate (polyiso) continuous insulation can function as a multiple control layer, providing a building with an air and water-resistive barrier and a thermal control layer. Additionally, this course reviews building codes and standards for meeting the continuous insulation requirements in steel stud building envelope designs, the benefits of using polyiso insulation in wall assemblies, and how polyiso insulation meets NFPA 285 requirements.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour ) 

    Exterior wall systems are the dividing line between the exterior and the interior and must address several fundamental performance goals of the building envelope. This course reviews traditional rainscreen design and examines why, with its single-component construction, an insulated composite backup wall system is a vast improvement over traditional multicomponent building technology.

  • ( ~ 1 hour ) 

    Standing seam metal roofing has been used successfully in the United States for centuries, and proper specification is key to realizing its intended performance. Examined here are: the factors driving the demand for standing seam metal roof and wall systems; standing seam panel basics; gauge and grade; oil canning; specification considerations; testing standards; and forming, delivery, storage, handling and warranty.

  • ( ~ 1 hour ) 

    Cellulose insulation has been used successfully by builders and designers for hundreds of years to provide comfort and warmth. Today, builders and designers also consider sustainability principles, climate change, occupant health and wellness issues, energy conservation, and carbon sequestration. Advanced cellulose insulation addresses all those areas as well. This course explains its environmental benefits, including its carbon capture ability, how it improves occupant health and well-being, and its numerous high-performance thermal, acoustic, and fire-resistant attributes.

  • ( ~ 1 hour ) 

    Concrete is an essential part of modern buildings. As net zero energy buildings become more common, it is crucial to find ways to reduce concrete’s carbon footprint without losing the performance characteristics that make it valuable to the building team. This course explains the sources of concrete’s carbon footprint and explores strategies for reducing embodied carbon and operational carbon in precast sandwich wall panels and insulated architectural cladding.

  • ( ~ 1 hour ) 

    Precast concrete pavers and roof deck systems enable designers to deliver on aesthetics and design objectives while achieving safety and durability requirements. Patented roof deck systems allow for the creation of safe and stable roof deck patios and green roofs that maintain sustainability requirements. This course examines the raw materials used in these systems, reviews the different finishes available, and discusses different paver applications and their methods of installation.

  • ( ~ 1 hour ) 

    This course details the benefits and selection process of magnesium oxide (MgO) sheathing in multifamily and commercial construction. MgO sheathing offers structural, fire resistance, and other properties that enable architects and designers to simplify the design and installation of building enclosures. Comparisons of MgO sheathing to traditional sheathing materials such as gypsum are included.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST