Building Knowledge and Connections
Displaying 1 - 25 of 184 results.
Scan this code with your mobile device camera to take this page on-the-go!
https://redirect.aecdaily.com/s3379/www.aecdaily.com/course/961744
As part of a well-designed rainscreen system, single-skin metal panels offer unique aesthetic options combined with the assurance that the building envelope will withstand the effects of long-term exposure to the elements. This course compares common cladding types; presents single-skin metal panel materials, coatings, finishes, and design options; and examines using single-skin metal panels with a single-component barrier wall to form a complete rainscreen assembly. This course is one of two identical courses titled Single-Skin Metal Panel Building Envelope Solutions . You will receive credit for taking only one of these courses.
https://redirect.aecdaily.com/s2955/www.aecdaily.com/course/894516
Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.
https://redirect.aecdaily.com/s719/www.aecdaily.com/course/903329
Designing to accommodate thermal movement is just one of the many critical details for the long-term success of a metal roof installation. This course covers the design and specification considerations and architectural details that impact project requirements, as well as the components and the energy-efficient features of metal roofing assemblies.
https://redirect.aecdaily.com/s13250/www.aecdaily.com/course/623569
When the asphalt fumes, open flame, and kettles that accompany hot-applied roofing are not permissible, cold-applied roofing is an option. There are a variety of types of cold-applied roofing that offer easy portability of materials to the roof, smaller roofing crews, ease of application, and a low-VOC option. In this course, we focus on the adhesive application of modified bitumen membranes using bituminous cold-process adhesives, the adhesive types, their components and characteristics, application methods, and design and use considerations.
https://redirect.aecdaily.com/s356556/www.aecdaily.com/course/1042076
This introductory course on spray polyurethane foam (SPF) covers component chemistry, different types of SPF, and the proper use of SPF in construction applications. In addition, the course addresses code compliance related to SPF for residential and commercial construction, as well as safe SPF installation practices. Participants will come away with a strong knowledge of how the proper use and application of spray foam can improve the indoor environment and the durability of the built environment.
https://redirect.aecdaily.com/s677063/www.aecdaily.com/course/897991
It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.
https://redirect.aecdaily.com/s18795/www.aecdaily.com/course/668974
Rainscreens are a multicomponent system offering redundancy in resisting the weather; however, continuity of each component is critical. When an insulated metal panel (IMP) is used within the system, it can function as a number of these components, simplifying installation and improving performance. This course looks at IMPs acting as barrier walls behind various rainscreen systems, with a discussion on the performance characteristics for air, water, vapor, and thermal management.
https://redirect.aecdaily.com/s7934/www.aecdaily.com/course/945391
Today's complex steel structures present numerous design challenges, including the challenge of fireproofing appropriately in order to ensure the safety and well-being of building occupants as well as protection of the structure itself. This course outlines the code and testing standards that inform fireproofing choices and the various passive fire protection products and methodologies that can address a comprehensive range of design challenges; insight into the proper specification of fire protection products as well as their ability to improve LEED® certification levels is also provided.
https://redirect.aecdaily.com/s2955/www.aecdaily.com/course/890369
An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.
https://redirect.aecdaily.com/s707154/www.aecdaily.com/course/969691
Throughout history, concrete mixes and carved natural stone have combined to create substance, beauty, and longevity in our architecture. Glass fiber reinforced concrete (GFRC) was created to ensure that the attributes of concrete and stone continue to be enjoyed but with efficiency in the application that is expected in today's world of design. This course covers the creation of GFRC, its components, fabrication, applications, and design capabilities. It compares GFRC to other types of architectural concrete and presents GFRC performance and sustainable design advantages.
https://redirect.aecdaily.com/s9572/www.aecdaily.com/course/969550
Underslab moisture is something that designers need to take into consideration in both the design and construction phases of a building project. It can cause many problems for the building and the health of its occupants over the course of its life span; however, if properly addressed during design and construction, many of these issues can be mitigated. This course looks at the different types of moisture movement that exist below the slab, examines solutions for a variety of site conditions, and reviews best practices for managing moisture.
https://redirect.aecdaily.com/s431285/www.aecdaily.com/course/1106562
Vinyl membrane decking can prolong the life cycle of various building components; however, performance and durability depend on vinyl membrane selection, specification, and installation. Fortunately, vinyl membrane manufacturers can support architects, contractors, and specifiers through all phases of the project to ensure a successful outcome. This course examines walkable, waterproof roof deck membranes and roofing systems and includes discussions on system characteristics, design considerations, and how to properly specify roof deck membrane systems.
https://redirect.aecdaily.com/s18795/www.aecdaily.com/course/787410
A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/1091510
Understanding the performance of building materials in real-world conditions is key to a successful building design. Recent studies have shown that the commonly reported R-values of polyisocyanurate foams at room temperature may overstate their real-world performance in cooler temperatures, potentially resulting in gaps in designed building enclosure assembly performance and quality. Through a theoretical framework and empirical data, this course shows that optimized polyisocyanurate foam insulation results in better performance, leading to improved energy savings and reduced potential for condensation. Participants are encouraged to explore innovative insulation materials, understand differences between them, and match optimal materials to specific applications while meeting modern construction codes and regulations. By matching the right insulation materials to the application, architects can contribute to energy-efficient and cost-conscious construction practices and help buildings reduce their impact on the environment.
https://redirect.aecdaily.com/s20151/www.aecdaily.com/course/972525
The Environmental Product Declaration (EPD) is not just an idea about how to “grade the greenness” of products; it is a well-developed, globally recognized way to make responsible comparisons and decisions regarding sustainable material design and continuous improvement. This course discusses the concept of the EPD as applied to building materials and how to integrate EPDs into design and product selection decisions. Detailed information from different thermal insulation EPDs is used to demonstrate how thermal insulation provides a unique and significant payback in terms of energy and environmental impacts.
https://redirect.aecdaily.com/s904648/www.aecdaily.com/course/1035801
This course details the benefits and selection process of magnesium oxide (MgO) sheathing in multifamily and commercial construction. MgO sheathing offers structural, fire resistance, and other properties that enable architects and designers to simplify the design and installation of building enclosures. Comparisons of MgO sheathing to traditional sheathing materials such as gypsum are included.
https://redirect.aecdaily.com/s12209/www.aecdaily.com/course/892901
In the wake of the green movement, combined with rising energy costs, building sustainability has become an important topic. This course examines how foil-faced polyisocyanurate (polyiso) continuous insulation can function as a multiple control layer, providing a building with an air and water-resistive barrier and a thermal control layer. Additionally, this course reviews building codes and standards for meeting the continuous insulation requirements in steel stud building envelope designs, the benefits of using polyiso insulation in wall assemblies, and how polyiso insulation meets NFPA 285 requirements.
https://redirect.aecdaily.com/s9572/www.aecdaily.com/course/953062
One of the more complicated issues today in building science is addressing moisture movement, since moisture can penetrate a building in several different ways and result in material degradation, air quality issues, and failure of the building enclosure. This course examines the ways moisture can enter a structure and discusses the role of different moisture control layers that, when correctly placed and installed, can prevent unwanted moisture infiltration.
https://redirect.aecdaily.com/s420795/www.aecdaily.com/course/874439
The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.
https://redirect.aecdaily.com/s480282/www.aecdaily.com/course/970413
As interest in cross-laminated timber (CLT) buildings grows, the market for building enclosure products as a whole has yet to fully provide the water-resistant barriers, vapor retarders, and air barriers to optimally support the unique characteristics of wood. Furthermore, there are few building enclosure design guides specific to detailing wood-framed walls and roofs. This comprehensive course fills the gaps, providing detailed information on mass timber, building enclosure issues, the vapor-permeable technology available to address wood’s unique moisture characteristics, and a how-to guide on detailing the walls and roof of the enclosure.
https://redirect.aecdaily.com/s431992/www.aecdaily.com/course/1095678
Water and moisture intrusion can affect everything from a building’s structural durability to its indoor air quality. Understanding the material options, installation, and testing criteria for high-performing weather-resistant barriers (WRBs) can help specifiers manage present and future moisture concerns.
https://redirect.aecdaily.com/s5023/www.aecdaily.com/course/1119498
A growing number of high-rise fire incidents around the world have raised awareness about the fire safety performance of taller structures. Timing for containing a high-rise fire is critical, as high numbers of occupants have limited means of escape. Vertical fire spread along the exterior facade may quickly overwhelm firefighters at ground level, especially if it advances to heights beyond the reach of their ground attack. This course looks at issues surrounding high-rise fires, how they spread, and how following building codes and proper material testing can lessen the risk or impact of these blazes.
https://redirect.aecdaily.com/s522670/www.aecdaily.com/course/992394
Building systems can be enhanced by incorporating reflective insulation or radiant barriers into the building envelope. With effective insulation, heat transfer is reduced, resulting in less summer heat gain, and less winter heat loss. This course explains common and effective uses for reflective insulation and radiant barriers in a wide range of construction and building applications and demonstrates how these systems reduce energy usage, increase the lifespan of the mechanical equipment for heating and cooling, and reduce maintenance requirements and frequency of replacement.
https://redirect.aecdaily.com/s10541/www.aecdaily.com/course/1049838
This program introduces building retrofits as a method to achieve green building standards by adapting existing structures. While a building retrofit may have several types of interventions, effective air sealing improves the durability of the structure and occupant comfort, health, and safety. This course includes a detailed look at sources of air leakage and the various methods available to address this infiltration. Several real-world examples demonstrate the importance of identifying the source of air leakage, investigating existing conditions, and proper detailing.
https://redirect.aecdaily.com/s5147/www.aecdaily.com/course/1085664
Today’s business environment presents significant challenges for commercial roofing systems. Shortages and disruptions in the supply chain, coupled with a diminishing labor force, have led to uncertainty, inflation, and scheduling difficulties for many projects. However, these challenges also open doors for innovative solutions. This course explores the financial and environmental advantages of using a PVC roofing system. It also highlights the benefits of choosing a roofing system from a single supplier.
🍪 We use cookies to offer you a better browsing experience, analyze site traffic, personalize content, and serve targeted advertisements. Read about how we use cookies and how you can control them by clicking here. Click "cookie settings" to adjust your preferences.