Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour ) 

    Provides an overview of the types, features, and benefits of designing with cellular PVC trim, including a discussion on the installation guidelines and manufacturing processes.

  • ( ~ 1 hour ) 

    Concrete-faced insulated products are composite prefinished panels that are used to construct walls and roofing assemblies to maximize the energy efficiency, durability, and performance of a building envelope. This course discusses the design criteria used in designing energy-efficient buildings using concrete-faced continuous insulation systems for low-slope roofing, walls, and foundations. The functional and physical features of protective membrane roof (PMR) systems, concrete-faced insulated panels for walls and foundations, and concrete structural insulated panels (CSIPs) are evaluated.

  • ( ~ 1 hour ) 

    Vinyl has long been a material of choice for construction products for interiors and exteriors because of its durability, cleanability, affordability, and suitability for a vast range of applications. This course furthers the conversation by discussing vinyl’s recyclability and sustainability and the attributes of laminated rigid PVC exterior and interior wall panels and siding and soffit products.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

  • ( ~ 1 hour ) 

    With the increasing prominence of glass in new buildings and retrofits, the use of window film can raise the style, performance, and safety of today’s building projects. This course examines the use of various types of window film (decorative, solar control, and safety/security) and their role in improving occupant comfort and safety, lowering energy costs, and enhancing privacy.

  • ( ~ 1 hour ) 

    Roofing technologies have come a long way from labor-intensive BUR systems that achieved watertightness through redundancy. Today’s single-ply membranes are thin, light and reliable, and installation is safe and efficient. This course focuses on thermoplastic single-plies, particularly those that are PVC based, and explores their benefits and limitations as well as the important factors to consider when selecting a roof system, ranging from fastening techniques to warranties to sustainability.

  • ( ~ 1 hour ) 

    Fenestration openings are a critical component of a building envelope, especially in present-day sustainable, energy-efficient buildings. Building envelopes play an important role in controlling the movement of heat, bulk water, and water vapor. Designing fenestration openings for buildings that use continuous exterior insulation has a significant role in reducing thermal bridging and thus conserving energy. This course reviews the impact of exterior insulation on fenestration installation design. The course also explores solutions for a wide variety of wall system variations.

  • ( ~ 1 hour ) 

    Leading aluminum extrusion manufacturers have established a variety of methods pertaining to material grade, surface protection, and component solutions to maximize the benefits of aluminum to suit a wide variety of applications. These advancements in technology have led to the development of sustainable wood-patterned aluminum products designed for exterior and interior applications. This course focuses on how these products can be used as a beautiful, high-performance, durable alternative for real wood in a range of applications, including screens, facades, decking, fencing, gates, cladding, and more.

  • ( ~ 1 hour ) 

    Polyisocyanurate (polyiso) insulation is one of North America’s most widely used, readily available, and cost-effective insulation products. While polyiso is currently most commonly known for its use on roofs and walls, this course focuses on the many benefits of using it in below-grade installations in order to meet energy codes, maximize the building foundation’s thermal performance, and extend the overall life of the structure. The course explores the requirements for three primary characteristics of any below-grade insulation—thermal performance, water absorption, and load capacity—and describes how polyiso meets or exceeds those requirements and protects the foundation waterproofing system.

  • ( ~ 1 hour ) 

    The beautiful gray patina of zinc architectural metal has graced the rooftops of buildings in Europe for hundreds of years. This course examines the sustainable characteristics of zinc as a roofing material, including its 100% recyclability, zero VOC requirement, and low embodied energy production process. The life cycle analysis of zinc is examined, as is zinc’s long-term service life. Various types of roof and wall applications are also discussed.

  • ( ~ 1 hour ) 

    Architectural metal fabric is a dynamic interior and exterior material used to create beautiful and functional façades, balustrades, and screening for a wide variety of commercial and public structures. This course discusses applications for metal fabric and its performance benefits, including safety, security, solar management, and sustainability. It also discusses how coatings and graphics technologies can be incorporated into metal fabrics to enhance branding and visual identity.

  • ( ~ 1 hour ) 

    The performance and durability of a roof are critical to the health, welfare, and safety of both building occupants and the building itself. This course examines the construction, materials, and best detailing practices that ensure the proper long-term performance of steep-pitch roofs. It describes and details layout options for assemblies of steep-pitch roofs and the key characteristics of roofing systems that help to prevent roof deterioration and damage. It then highlights best practices in detailing and constructing steep-pitch roof systems that mitigate water, ice, snow, fire, or wind damage to the roof.

  • ( ~ 1 hour ) 

    Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.

  • ( ~ 1 hour ) 

    This course aims to educate learners about the chemistry of spray-applied polyurethane foam (SPF), its various applications in the construction industry, safe handling and installation, and its contribution to sustainable design. The advantages of using SPF are highlighted in terms of its benefits to energy conservation and fire safety. Its role as a high-performance air barrier that satisfies code and LEED® criteria and complies with various standards is also discussed.

  • ( ~ 1 hour ) 

    Understanding building physics is critical to proper building envelope design. Examined here are practical concepts for the building designer, including how cladding systems perform across different climate zones and applications. Environmental control layers and hygrothermal loads are reviewed, as is the concept of perfect/universal wall design. The course focuses on how single-component insulated metal panels (IMPs) function as a perfect/universal wall, simplifying wall system design and installation.

  • ( ~ 1 hour, 15 minutes ) 

    A metal roof combines performance and aesthetics to give commercial and residential buildings strength, longevity, and character. This course examines the features and benefits of standing seam metal roofing and explains the factors to consider when selecting a project-specific metal roofing system.

  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.

  • ( ~ 1 hour ) 

    Lightweight, prefinished, and factory-fabricated insulated metal panels (IMPs) offer building owners a durable, cost-efficient, and easy-to-install roofing system that provides an air barrier, vapor barrier, and insulation all in one product. This course discusses the characteristics of IMPs and the installation process and explains why IMPs are ideally suited for pre-engineered and structural steel buildings. The role of IMPs in a building’s hygrothermal control layers and IMP code compliance are reviewed.

  • ( ~ 1 hour ) 

    Historically, traditional waterproofing methods involve the placement of a barrier or membrane between the concrete and water. Unlike membranes and other surface systems, crystalline waterproofing is designed to make the concrete itself waterproof. This course discusses how crystalline waterproofing technology provides a high level of performance to concrete structures and what design professionals need to know in order to specify and understand how this chemical technology can improve building projects, cut costs, and help earn LEED® credits.

  • ( ~ 1 hour ) 

    At their root, metal roofs and walls made from steel, copper, zinc, or aluminum have a lower environmental impact because of their ability to be recycled and reused. This course focuses on the green aspects of standing seam metal roofs, and in particular, their cool roof characteristics. Also addressed are the implications of heat islands, what constitutes construction of cool roofs/walls and how they work, some rules of thumb for understanding cool metal roofing, roof slope impacts on performance, and codes, ratings, and standards that apply to designing cool roofs/walls.

  • ( ~ 1 hour ) 

    Underslab moisture is something that designers need to take into consideration in both the design and construction phases of a building project. It can cause many problems for the building and the health of its occupants over the course of its life span; however, if properly addressed during design and construction, many of these issues can be mitigated. This course looks at the different types of moisture movement that exist below the slab, examines solutions for a variety of site conditions, and reviews best practices for managing moisture.

  • ( ~ 1 hour, 15 minutes ) 

    There are a multitude of building envelope products used and a variety of methods taken for achieving energy and building code requirements. Understanding the different roles a product plays in the envelope simplifies its design. In this course, we take a look at the code requirements for buildings classified as IBC Types I–IV, paths to achieving compliance, and the number of roles polyisocyanurate insulation plays in meeting these requirements.

  • ( ~ 1 hour ) 

    Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.

  • ( ~ 1 hour ) 

    Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST