Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Insulated metal panels (IMPs) are lightweight composite exterior wall and roof panels with superior insulating properties. Commercial and industrial buildings benefit from their energy efficient insulation, lightweight construction, durability, and cost-effective, timely installation. This course discusses IMPs in terms of their design options, appropriate support structure, installation, function, code compliance, and warranties.

  • ( ~ 1 hour ) 

    At this time, there are no national or state codes relating to snow retention for roofing applications, even in the heaviest snow load areas. Consequently, it is very important for building professionals to take extra care when designing a snow retention system for installations in snowy environments. This course provides a review of the problems and solutions associated with roofing in cold climates, including a discussion on the proper engineering of snow retention devices. There are many dangers involved if the appropriate considerations are not made while building and maintaining a roof in an alpine region.

  • ( ~ 1 hour ) 

    The building envelope is the physical separator between the conditioned and unconditioned environment of a building and provides resistance to air, water, heat, light, and noise transfer. As a thermal barrier, spray polyurethane foam (SPF) offers numerous opportunities to contribute to building envelope performance and indoor air quality in several project types. This course presents the sustainable aspects of SPF, SPF fire and strength testing, and the benefits of SPF in below- and above-grade and rooftop applications.

  • ( ~ 1 hour ) 

    The 2022 Inflation Reduction Act shines a light on how low-carbon building material selection is one of the keys to reducing greenhouse gas emissions in the US. High-performance, sustainable products and thoughtful assemblies designed with the building life cycle in mind are critical to the future of our sustainable communities. This course provides a look at how low-carbon and sustainability considerations are activated from product to building design. Factors impacting a sustainable building life cycle are discussed to help architects and owners with building performance that meets the design intent not just on paper but also in use.

  • ( ~ 1 hour ) 

    Single-family attached residences (residences that share one or more walls between neighbors) are required to utilize area separation walls between units. A key design criterion of any firewall—besides its fire rating—is that it be structurally independent in a fire. This course evaluates two-hour fire-resistance-rated walls used in single-family attached and multifamily residential construction, the options available in today’s marketplace, firewall installation requirements, and fire-resistance testing.

  • ( ~ 1 hour, 15 minutes ) 

    Typically, all the brick selected for a given project will be either full bed depth (anchored) or thin brick (adhered); however, situations may benefit from combining the two types of masonry veneer on a project. The intent of this course is to differentiate between the types of brick masonry veneer, discuss the unique detailing required when combining veneer types, and provide project examples demonstrating where both types of masonry veneer have been successfully integrated. This course will focus on exterior applications of anchored and adhered masonry veneer.

  • ( ~ 1 hour ) 

    The beaches and proximity to the Atlantic Ocean are some of the advantages of living in Florida. However, the extreme wind forces from hurricanes can easily damage even the strongest buildings and cause billions of dollars in property loss. As a result, certain areas of Florida―Miami-Dade and Broward Counties—have been designated High Velocity Hurricane Zones. The building products used in these zones must be laboratory tested to meet extreme wind and pressure performance standards. This course explains why a metal roof system designed to minimize the damage from hurricanes is important.

  • ( ~ 1 hour ) 

    Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.

  • ( ~ 1 hour ) 

    Vinyl has long been a material of choice for construction products for interiors and exteriors because of its durability, cleanability, affordability, and suitability for a vast range of applications. This course furthers the conversation by discussing vinyl’s recyclability and sustainability and the attributes of laminated rigid PVC exterior and interior wall panels and siding and soffit products.

  • ( ~ 1 hour, 30 minutes ) 

    Continuous insulation is part of building standards and state and energy codes due to its ability to reduce thermal bridging and the associated heat loss and energy consumption. This course looks at the use of polyisocyanurate as a continuous insulation in Type V and residential construction and its use as a multifunctional envelope component—air barrier, weather-resistive barrier, and vapor retarder—by reviewing code requirements for the building envelope.

  • ( ~ 1 hour ) 

    Ensuring proper use of methods and materials allows masonry walls to perform well and enjoy a long life. Use of masonry joint reinforcement and accessories is an essential part of this. This course provides a brief history of solid masonry walls leading up to the modern cavity walls of today, including a discussion of the basic working knowledge of masonry joint reinforcing, structural codes, and moisture control in cavity wall construction.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour, 15 minutes ) 

    Integrated fire and smoke door systems meet all life safety and compartmentalization requirements without sacrificing an architect’s vision. This course explains how multiple codes and standards apply to an opening, elevator lobby, and elevator shaft and discusses how integrated door systems provide building owners with a complete turnkey door system that uses components engineered to work as a unified whole. 

  • ( ~ 1 hour ) 

    Moisture and soil gas beneath concrete slabs can cause a myriad of problems in both residential and commercial applications. The causes and consequences of these problems are reviewed in this course, along with a discussion on the types and characteristics of under-slab water vapor and soil gas barriers.

  • ( ~ 1 hour ) 

    Understanding building physics is critical to proper building envelope design. Examined here are practical concepts for the building designer, including how cladding systems perform across different climate zones and applications. Environmental control layers and hygrothermal loads are reviewed, as is the concept of perfect/universal wall design. The course focuses on how single-component insulated metal panels (IMPs) function as a perfect/universal wall, simplifying wall system design and installation.

  • ( ~ 1 hour ) 

    The construction industry has experienced a significant increase in moisture-related problems in exterior walls. This presentation explains how a rainscreen wall system prevents moisture accumulation within walls by providing a means for drainage and ventilation, thereby prolonging the life of buildings. Discussion topics include air and moisture movement in the building envelope, building code and water-resistive barriers, and stucco and thin veneers in rainscreen systems.

  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.

  • ( ~ 1 hour ) 

    Provides an overview of the types, features, and benefits of designing with cellular PVC trim, including a discussion on the installation guidelines and manufacturing processes.

  • ( ~ 1 hour, 30 minutes ) 

    Attic ventilation is an important component in proper structural design. By encouraging airflow, attic ventilation plays a key role in maintaining structural integrity, ensuring roof component durability, providing a healthy indoor environment, and minimizing energy consumption. Additionally, proper attic ventilation hinders or prevents mold growth, reduces interior pollutants, and acts as a pivotal fire prevention tool. This course looks at how attic ventilation systems work, the benefits they provide, and the associated building codes and regulations.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour ) 

    Insulated vinyl siding, known as insulated siding, is an exterior cladding that combines the protection and low maintenance of traditional vinyl siding with the energy efficiency of EPS foam. The composite results in an improvement in performance and aesthetics. This course discusses the benefits associated with installing insulated siding on new and renovation residential construction projects, and the range of architectural styles that can be achieved with the breadth of design and color options available.

  • ( ~ 1 hour ) 

    Building science experts acknowledge the need for drainage in both vertical and horizontal applications in order to eliminate moisture issues and extend the life of the building. This course examines foundation wall, green roof, and plaza deck applications and discusses the factors that impact drainage, including soil permeability, saturation, land cover, and loading. Flow rate standards are discussed, and drainage composite mat installation is explained.

  • ( ~ 1 hour ) 

    In the fight against climate change, efforts intensify against the planet’s number one enemy—carbon dioxide. The building industry will play a significant role in these efforts. Embodied carbon—the global greenhouse gas emissions generated from sourcing raw material and processing, manufacturing, transporting, and installing building materials—will be the target over the next decade. This course will define embodied carbon, its impact on greenhouse gas emissions, the construction industry's impact, and the methods and tools that building designers can employ to limit embodied carbon.

  • ( ~ 1 hour ) 

    Outdoor living space has become an important residential design consideration in the last several years. Decks create welcoming spaces to relax and entertain with family and friends, and a well-built deck can add more living space and value to a home. This course discusses deck surfaces, maintenance, and costs and explores porcelain tile as an alternative to wood and composite deck surfaces that is well suited to exterior environments. Also discussed is how porcelain tile can be used with a new pultruded fiberglass and composite underlayment, called structural ribbed self-supporting boards, and the sustainable features of this technology.

Displaying 1 - 25 of 181 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST