Category: THERMAL AND MOISTURE PROTECTION

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    With the demand for sustainable power on the rise, building owners and homeowners alike are turning to solar power as a supplemental power generator. Choosing the right platform for the solar panels is a critical step in the design process and can have a significant impact on both initial and long-term costs. This course discusses the basics of photovoltaic systems, including the components and rooftop applications. Comparisons between traditional roofing and standing seam metal roofing platforms are examined, and the benefits of a nonpenetrating clamping system are discussed.

  • ( ~ 1 hour ) 

    In applications where wood may be exposed to moisture, insects, or fungal organisms, preservative-treated wood can ensure a project’s durability. This course reviews: the manufacturing process for pressure-treated wood; types of preservative treatments and the required levels of retention as dictated by the end-use application, desired service life, and exposure conditions; American Wood Protection Association (AWPA) Use Category standards; current issues concerning preserved wood in residential and commercial construction; and Best Management Practices (BMPs) for aquatic uses.

  • ( ~ 1 hour, 15 minutes ) 

    Critical to concrete waterproofing are the products used in combination to create a system that ensures complete control of moisture migration. Presented here are effective concrete waterproofing technologies and how they improve the durability and lifespan of structures. Discussions include water penetration, system selection, membrane protection, and cementitious waterproofing.

  • ( ~ 1 hour ) 

    Building systems can be enhanced by incorporating reflective insulation or radiant barriers into the building envelope. With effective insulation, heat transfer is reduced, resulting in less summer heat gain, and less winter heat loss. This course explains common and effective uses for reflective insulation and radiant barriers in a wide range of construction and building applications and demonstrates how these systems reduce energy usage, increase the lifespan of the mechanical equipment for heating and cooling, and reduce maintenance requirements and frequency of replacement.

  • ( ~ 1 hour ) 

    Homeowners are looking for alternatives to traditional cladding materials that are affordable and long lasting and require little or no upkeep. Advances in technology and manufacturing techniques mean cellular PVC cladding products can meet all these requirements without sacrificing aesthetics. This course reviews the benefits of cellular PVC as a cladding material and discusses how cellular PVC rebutted and rejointed (R&R) prefinished shingles can provide the look and feel of wood shingles with an extended level of durability and low maintenance.

  • ( ~ 1 hour, 30 minutes ) 

    The building envelope must withstand the effects of long-term exposure to the elements. This course explores rainscreen wall design and the control of hygrothermal loads. The traditional multicomponent backup wall assembly is compared with the single-component, insulated metal composite backup wall system, outlining key differences in design and construction and their overall effect on installation and performance.

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    Interest in metal cladding is continually growing because of its sustainable features: durability, long life span, recyclability, and contribution to cool roofs. Manufacturers provide a wide range of panel profiles, materials, and colors to meet the increased demand. This course examines the performance characteristics and attributes of metal roofing and cladding, different aesthetic options, and best installation practices, as well as how they contribute to more energy-efficient buildings.

  • ( ~ 1 hour ) 

    Designing to accommodate thermal movement is just one of the many critical details for the long-term success of a metal roof installation. This course covers the design and specification considerations and architectural details that impact project requirements, as well as the components and the energy-efficient features of metal roofing assemblies.

  • ( ~ 1 hour, 15 minutes ) 

    Due to their durability, low operational cost, and sustainability, metal roofs are gaining popularity in both commercial and residential markets. Owner expectations for this product family have increased as well and now include heightened aesthetics and long-term performance. While metal roofing systems are certainly up to these challenges, when they fail, the results are costly. Consequently, it is imperative designers have full knowledge of metal roof design and detailing. This course covers the top ten problems metal roof designers face and describes how these problems can be prevented through proper design.

  • ( ~ 1 hour ) 

    Learners will receive information about cast stone and how it is made, testing requirements, applications, design recommendations, and how it differs from related materials. Learners will describe appropriate specification, design details of cast stone for architectural applications, and how to determine quality cast stone production.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour ) 

    Precast concrete pavers and roof deck systems enable designers to deliver on aesthetics and design objectives while achieving safety and durability requirements. Patented roof deck systems allow for the creation of safe and stable roof deck patios and green roofs that maintain sustainability requirements. This course examines the raw materials used in these systems, reviews the different finishes available, and discusses different paver applications and their methods of installation.

  • ( ~ 1 hour ) 

    Building science experts acknowledge the need for drainage in both vertical and horizontal applications in order to eliminate moisture issues and extend the life of the building. This course examines foundation wall, green roof, and plaza deck applications and discusses the factors that impact drainage, including soil permeability, saturation, land cover, and loading. Flow rate standards are discussed, and drainage composite mat installation is explained.

  • ( ~ 1 hour ) 

    A rooftop solar photovoltaic system offers myriad benefits to both building owners and the environment; to maximize the benefits, however, it is important to be aware of the potential causes and effects of problems with rooftop installations. This course presents the issues to consider to prevent damaging the roof, voiding the roofing warranty, and incurring additional costs. Solar system mounting options are explored in terms of how they can help eliminate concerns around rooftop installations.

  • ( ~ 1 hour ) 

    The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.

  • ( ~ 1 hour ) 

    Architectural insulated metal panels (IMPs) are an increasingly popular choice for building developers and architects, presenting a compelling solution that combines functionality, efficiency, and aesthetic appeal. This course reviews the architectural IMP, its applications and benefits, and comparisons to other materials. It explores current trends and developments that are paving the way for increased aesthetic possibilities and building envelope performance.

  • ( ~ 1 hour ) 

    A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.

  • ( ~ 1 hour, 15 minutes ) 

    According to building professionals, the solution to achieving an energy-efficient building envelope is to focus more on the roof. Protected membrane roof (PMR) assemblies deliver thermal efficiency and can play a valuable role in a sustainable design strategy. Presented in this course is a review of the components, advantages, ballast options, and design and installation considerations of PMR assemblies.

  • ( ~ 1 hour ) 

    This course explains and illustrates how high-performance, fully composite insulated precast sandwich wall panels can be designed and specified to manage aesthetics, quality, performance, and cost. It explores the pros, cons, and attributes of wythe connectors such as carbon fiber reinforced polymer (CFRP) grid trusses, options for achieving continuous insulation, manufacturing and testing procedures, and strategies for managing costs. It concludes by providing illustrative sample installations to demonstrate the broad range of building types and appearances that can be created with insulated precast enclosures.

  • ( ~ 1 hour ) 

    Insulated vinyl siding, known as insulated siding, is an exterior cladding that combines the protection and low maintenance of traditional vinyl siding with the energy efficiency of EPS foam. The composite results in an improvement in performance and aesthetics. This course discusses the benefits associated with installing insulated siding on new and renovation residential construction projects, and the range of architectural styles that can be achieved with the breadth of design and color options available.

  • ( ~ 1 hour ) 

    Today’s building professionals seeking better moisture management and energy efficiency from the exteriors of their projects are turning to rainscreens as a solution to both. Wood-plastic composite (WPC) provides a durable and long-lasting material suitable for use in rainscreen systems, decks, railings, and more. Reviewed in this course are the manufacturing process, performance and green benefits, and installation of WPC cladding that is fully capped with a polymeric plastic “shield,” providing long-term resistance to moisture, staining, and fading.

  • ( ~ 1 hour, 15 minutes ) 

    Metal is a versatile building material, boasting both historical credentials and modern aesthetics. To earn the right to rise to the top as the material of choice, however, metal must also demonstrate cost efficiency, durability, and minimal environmental impact. In this course, we will examine the value of metal roofs and walls during initial construction and through a building’s life cycle and illustrate metal’s benefits with a number of case studies.

  • ( ~ 1 hour, 30 minutes ) 

    The key to an energy-efficient metal building is the implementation of a continuous insulation system that virtually eliminates thermal bridging and prevents condensation. This course discusses how using thermal spacer blocks and metal building insulation in the building envelope increases energy performance, protects against condensation, and meets stringent energy code requirements.

  • ( ~ 1 hour, 15 minutes ) 

    Building owners have come to rely on weatherable coatings to provide long-term protection to their buildings. With an increased focus on sustainability, performance, and durability, PVDF resin-based coatings can help architects and painting contractors exceed their clients’ design goals. This course covers the key components and functions of high-performance weatherable coatings and looks at how these coatings contribute to sustainable design.

Displaying 1 - 25 of 183 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST