International Institute of Building Enclosure Consultants

The International Institute of Building Enclosure Consultants (IIBEC) is an international association of professionals who specialize in roofing, waterproofing, and exterior wall specification and design.

Click to Learn More About the International Institute of Building Enclosure Consultants

Visit www.iibec.org and Join Now!

Displaying 1 - 25 of 113 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-113] NEXT LAST SHOW ALL

  • ( ~ 1 hour, 15 minutes ) 

    As interest in cross-laminated timber (CLT) buildings grows, the market for building enclosure products as a whole has yet to fully provide the water-resistant barriers, vapor retarders, and air barriers to optimally support the unique characteristics of wood. Furthermore, there are few building enclosure design guides specific to detailing wood-framed walls and roofs. This comprehensive course fills the gaps, providing detailed information on mass timber, building enclosure issues, the vapor-permeable technology available to address wood’s unique moisture characteristics, and a how-to guide on detailing the walls and roof of the enclosure.

  • ( ~ 1 hour ) 

    A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.

  • ( ~ 1 hour ) 

    High-performance coatings are a necessity when it comes to protecting building exteriors and restoring them after harsh weathering and UV degradation; the right coatings prolong a building exterior’s life span and divert materials from landfills. New PVDF coating systems provide superior protection while satisfying aesthetic and environmental considerations. Their various characteristics and benefits are explored, and application methods are discussed.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete is one of the most widely used building materials throughout the world, and as such, it is in everyone’s best interest to consider more sustainable options. This course provides an overview of the properties of slag cement. Discussion topics include benefits, effects on plastics and hardened concrete, environmental profile including life cycle analysis (LCA) and environmental product declarations (EPDs), and various slag cement applications.

  • ( ~ 1 hour ) 

    Green facades can contribute to building energy efficiency, durability, aesthetic value, sustainability, and cost effectiveness in the performance of ecological system services. This course examines the considerations required for successful green facade installations and includes discussions on system selection, design, plant selection, maintenance, and client/owner education.

  • ( ~ 1 hour ) 

    Comprehensive site security design should balance managing traffic flow and preventing vehicular intrusion with enhancing the existing character of the site. This course presents FEMA’s guidance on risk assessment and layers of defense, vehicle impact test standards, bollard types, the precast concrete manufacturing process, barrier system design considerations, and incorporating precast concrete bollards and site furnishings into perimeter security design.

  • ( ~ 1 hour ) 

    Fenestration openings are a critical component of a building envelope, especially in present-day sustainable, energy-efficient buildings. Building envelopes play an important role in controlling the movement of heat, bulk water, and water vapor. Designing fenestration openings for buildings that use continuous exterior insulation has a significant role in reducing thermal bridging and thus conserving energy. This course reviews the impact of exterior insulation on fenestration installation design. The course also explores solutions for a wide variety of wall system variations.

  • ( ~ 1 hour ) 

    Resiliency is a growing necessity. It is important to understand the impacts on the built environment resulting from natural and manmade disasters and disturbances and to design for those impacts now. Presented in this course is an overview of the benefits of using steel doors as part of a resilient design strategy for applications requiring resistance to blasts, tornadoes, and ballistics.

  • ( ~ 1 hour ) 

    This course examines bamboo as a sustainable construction material by focusing on its properties, environmental advantages, and innovative applications. Participants will explore responsible sourcing, manufacturing practices, and key certifications. The course also covers advanced products such as thermally modified and high-density bamboo. Professionals will gain the knowledge required to integrate bamboo into projects that align with performance and sustainability standards.

  • ( ~ 1 hour, 15 minutes ) 

    Anytime a facility has people working on a roof, their safety and protection must be the priority. Even under the best conditions, working on a rooftop is dangerous due to the roof’s elevation, slope, and edge, as well as other hazards created by weather conditions, electricity, and power tools. This course reviews the hazards of the rooftop environment and the relevant Occupational Safety and Health Administration (OSHA) regulations to aid designers, property owners, and facility managers in selecting safe access and fall protection systems for their buildings.

  • ( ~ 1 hour ) 

    Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.

  • ( ~ 1 hour ) 

    Assesses the urban environmental issues of stormwater runoff and heat islands and describes how their damaging impacts can be mitigated by blue, white, and green roofs. The considerations and additional benefits of each roof type are also discussed.

  • ( ~ 1 hour, 15 minutes ) 

    ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.

  • ( ~ 1 hour ) 

    The inherent properties of concrete masonry, including strength, durability, and fire safety, have been well documented, though a perception of high cost persists. Due to significant changes to codes and standards that increased the flexibility of concrete masonry structural design, this construction method may also offer cost-effective and energy-efficient alternative solutions. This course reviews changes to ASTM C90 and the masonry design standard and includes a discussion on the benefits and opportunities these requirements bring.

  • ( ~ 1 hour, 30 minutes ) 

    Continuous insulation is part of building standards and state and energy codes due to its ability to reduce thermal bridging and the associated heat loss and energy consumption. This course looks at the use of polyisocyanurate as a continuous insulation in Type V and residential construction and its use as a multifunctional envelope component—air barrier, weather-resistive barrier, and vapor retarder—by reviewing code requirements for the building envelope.

  • ( ~ 1 hour ) 

    Designing beautiful, sustainable, high-performance buildings can help your structures leave a lasting impression and positive impact. Insulating concrete forms (ICFs) accomplish that while providing innovative design possibilities for single or multistory projects. Learn about the features and advantages of building with ICFs designed as a cost-effective, energy-efficient solution that offers substantial benefits over traditional construction methods.

  • ( ~ 1 hour ) 

    Urban warming negatively impacts human health and quality of life, energy use, air quality, social equity, and economic prosperity. This course describes how solar reflective cool roof and wall materials help protect individuals and communities from the impacts of extreme heat and discusses the factors that influence energy savings and performance. The course also notes various climate resilience initiatives, green building programs, and energy codes that require or promote the use of cool roofs or walls and concludes by explaining the important role of third-party product ratings and the educational resources available online.

  • ( ~ 1 hour, 30 minutes ) 

    The building envelope must withstand the effects of long-term exposure to the elements. This course explores rainscreen wall design and the control of hygrothermal loads. The traditional multicomponent backup wall assembly is compared with the single-component, insulated metal composite backup wall system, outlining key differences in design and construction and their overall effect on installation and performance.

  • ( ~ 1 hour ) 

    The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.

  • ( ~ 1 hour ) 

    In today’s rapidly evolving world, safety is a critical factor in architectural design. This course examines how fenestration systems enhance building protection through bullet resistance, fortified glazing, and advanced barrier solutions. Learn how potential threats influence the selection of these systems and how they integrate seamlessly into architectural projects.

  • ( ~ 1 hour ) 

    Net zero energy ready buildings are a popular topic in today's world of climate change. This course explores how energy efficiency has expanded toward exterior wall assemblies, where thermal bridging and thermally broken subframing systems are becoming the new norm.

  • ( ~ 1 hour ) 

    Due to advancements in architectural decorative glass technology, the number of design options available to help designers and architects achieve the specific aesthetics and performance requirements they desire has dramatically increased. This course provides a review of architectural decorative glass including product options, applications, features, and specification considerations. Also discussed is how decorative glass can contribute to sustainable design and LEED® initiatives.

  • ( ~ 1 hour ) 

    High-performance, fully composite insulated wall panels deliver all the benefits of factory precasting with load-bearing and energy efficiency performance from the lightest, thinnest panels possible. This course describes the makeup and cost efficiencies of composite precast panels, their benefits when made with carbon fiber grid shear trusses, and considerations for selecting among the insulation options. The majority of the course focuses on case studies of successful precast enclosure projects in a wide variety of building types across a range of markets.

  • ( ~ 1 hour, 15 minutes ) 

    The diffuse light-transmitting and composite technology of translucent structural sandwich panels has increasingly caught the imagination of architects and designers because it is possible to maximize wall or roof daylighting while minimizing energy loss, with consequent savings in the running costs of heating, air conditioning, and artificial lighting. This course explores the fundamental connection between light and health by examining how translucent structural sandwich panels deliver glare-free, diffuse daylight deeper and more evenly into spaces with maximum thermal efficiency.

  • ( ~ 1 hour ) 

    Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.

Displaying 1 - 25 of 113 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-113] NEXT LAST SHOW ALL