International Institute of Building Enclosure Consultants

The International Institute of Building Enclosure Consultants (IIBEC) is an international association of professionals who specialize in roofing, waterproofing, and exterior wall specification and design.

Click to Learn More About the International Institute of Building Enclosure Consultants

Visit www.iibec.org and Join Now!

Displaying 1 - 25 of 116 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-116] NEXT LAST SHOW ALL

  • ( ~ 1 hour, 15 minutes ) 

    Insulation can help increase overall energy efficiency, minimize the spread of fire, manage risks associated with moisture and mold, and improve occupant comfort. Choosing the right insulation and putting it in the right location is becoming one of the most important decisions in design, construction, and retrofit. Reviewed in this course are the features, benefits, and design and installation considerations related to mineral wool continuous insulation.

  • ( ~ 1 hour ) 

    Architectural insulated metal panels (IMPs) are an increasingly popular choice for building developers and architects, presenting a compelling solution that combines functionality, efficiency, and aesthetic appeal. This course reviews the architectural IMP, its applications and benefits, and comparisons to other materials. It explores current trends and developments that are paving the way for increased aesthetic possibilities and building envelope performance.

  • ( ~ 1 hour, 30 minutes ) 

    Continuous insulation is part of building standards and state and energy codes due to its ability to reduce thermal bridging and the associated heat loss and energy consumption. This course looks at the use of polyisocyanurate as a continuous insulation in Type V and residential construction and its use as a multifunctional envelope component—air barrier, weather-resistive barrier, and vapor retarder—by reviewing code requirements for the building envelope.

  • ( ~ 1 hour ) 

    The construction of residential and commercial buildings that use less energy to operate and are long lived is a key part of sustainable design. Insulated concrete forms (ICFs) provide the necessary U-factor, airtightness, resiliency, and durability for all building types. Insulated concrete forms in residential and commercial construction projects offer excellent thermal performance and reduced energy consumption and operating costs, while maintaining a very comfortable and healthy interior environment. This course examines the ICF wall, including materials and components, and discusses design considerations and construction.

  • ( ~ 1 hour ) 

    Masonry wall types have evolved from self-supporting mass walls to cavity walls and veneers that require wall ties or anchors. Over time, anchors can fail and masonry wall systems can become unstable and require repair. This course discusses how to recognize unstable façades, how retrofit anchors can be used to repair these instabilities, the different types of anchors available, and how to determine the proper repair procedure.

  • ( ~ 1 hour ) 

    With the ever-increasing focus on the sustainable built environment, building owners, architects, engineers, and contractors are incorporating structural steel into their designs. Presented here is a comprehensive view of the cradle-to-cradle structural steel supply chain from a sustainability perspective. Also discussed are steel production and design, steel’s potential contribution to LEED v4 credits, thermal capacity, and the environmental and life cycle benefits of prefabricated fireproof steel columns.

  • ( ~ 1 hour ) 

    Automated-shading systems are designed to maximize natural daylight, increase building energy efficiency, and ensure occupants have a comfortable environment with views to the outside. This course will explain how an automated shading system predicts, monitors, and responds to the daily microclimate surrounding a building to effectively manage daylight, solar-heat gain, occupant comfort levels, and energy use demands.

  • ( ~ 1 hour ) 

    Radon is a colorless, odorless gas, a Class A carcinogen, the leading cause of cancer after smoking, and the leading cause of death for nonsmokers. It is found in soil, rock, and groundwater. If radon enters a home through slabs, basements, and crawl spaces, breathing it can lead to illness or even death. This course examines how the gas travels through soil and into structures and the various interception approaches and materials that can be utilized to prevent entry into inhabited spaces. It also highlights building code requirements and language that can assist with ensuring the correct radon interception systems are designed and installed effectively.

  • ( ~ 1 hour ) 

    Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.

  • ( ~ 1 hour ) 

    Some building parts may see minimal human contact or weathering. Doors and entryways, however, need to be able to stand up to heavy use, frequent direct contact from building occupants, and environmental impacts. In this regard, FRP doors and frames offer robust strength, reliability, and durability. They provide project versatility and customization in colors and textures, are excellent thermal insulators, and allow for easier installation and lower costs in construction projects. This course outlines the FRP door and frame components, manufacturing methods, and types and discusses the benefits of FRP products.

  • ( ~ 1 hour ) 

    Building science experts have acknowledged the need for both drainage and ventilation in exterior wall systems in order to eliminate moisture issues and extend the life of buildings. This presentation reviews the concepts of rainscreen technology and the solutions for compliance with a focus on engineered rainscreen drainage and ventilation mats used in direct-applied and ventilated wall designs. Prerequisites: No Course Level: Introductory

  • ( ~ 1 hour ) 

    Composite roofing materials have been available for over a decade, providing a cost-effective alternative to traditional slate and shake roofing systems. In this course, design professionals can thoroughly explore the sustainable and versatile characteristics of composite roofing solutions. Also discussed are the benefits of composite roofing systems, such as their long life cycle, durability, and adaptability for various applications and environments.

  • ( ~ 1 hour ) 

    Understanding building physics is critical to proper building envelope design. Examined here are practical concepts for the building designer, including how cladding systems perform across different climate zones and applications. Environmental control layers and hygrothermal loads are reviewed, as is the concept of perfect/universal wall design. The course focuses on how single-component insulated metal panels (IMPs) function as a perfect/universal wall, simplifying wall system design and installation.

  • ( ~ 1 hour, 30 minutes ) 

    The building envelope must withstand the effects of long-term exposure to the elements. This course explores rainscreen wall design and the control of hygrothermal loads. The traditional multicomponent backup wall assembly is compared with the single-component, insulated metal composite backup wall system, outlining key differences in design and construction and their overall effect on installation and performance.

  • ( ~ 1 hour ) 

    At this time, there are no national or state codes relating to snow retention for roofing applications, even in the heaviest snow load areas. Consequently, it is very important for building professionals to take extra care when designing a snow retention system for installations in snowy environments. This course provides a review of the problems and solutions associated with roofing in cold climates, including a discussion on the proper engineering of snow retention devices. There are many dangers involved if the appropriate considerations are not made while building and maintaining a roof in an alpine region.

  • ( ~ 1 hour ) 

    In applications where wood may be exposed to moisture, insects, or fungal organisms, preservative-treated wood can ensure a project’s durability. This course reviews: the manufacturing process for pressure-treated wood; types of preservative treatments and the required levels of retention as dictated by the end-use application, desired service life, and exposure conditions; American Wood Protection Association (AWPA) Use Category standards; current issues concerning preserved wood in residential and commercial construction; and Best Management Practices (BMPs) for aquatic uses.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete is one of the most widely used building materials throughout the world, and as such, it is in everyone’s best interest to consider more sustainable options. This course provides an overview of the properties of slag cement. Discussion topics include benefits, effects on plastics and hardened concrete, environmental profile including life cycle analysis (LCA) and environmental product declarations (EPDs), and various slag cement applications.

  • ( ~ 1 hour ) 

    Upward-acting commercial sectional door systems can be a major contributor to controlling energy costs in buildings. This course evaluates the materials and construction of various door types and discusses the selection criteria and operation features that are available to enhance door performance for a range of applications.

  • ( ~ 1 hour ) 

    Beyond aesthetics, ventilated façades and cladding systems provide added wind load absorption, moisture protection, and insulation properties, resulting in prolonged building durability and sustainability. This course examines how these systems benefit occupant well-being by mitigating exterior noise transmission, offer significant building operating energy savings from decreased HVAC demands, and increase occupant comfort by regulating interior temperatures. Mechanical and chemical adhesive attachment is also examined, focusing on the adhesive’s ability to absorb wind-induced vibration as well as expansion and contraction from temperature and humidity changes. Several case studies are also discussed.

  • ( ~ 1 hour ) 

    Creating a quieter, more comfortable building starts with a focus on windows and doors, the weakest links in the building envelope for sound transmission. This course covers the elements of sound, the metrics used to measure sound attenuation, and the glazing and installation options best suited for an effective sound control strategy.

  • ( ~ 1 hour, 30 minutes ) 

    The role of a fire-rated door is to maintain the integrity of a fire-rated enclosure in the event of a fire, giving building occupants enough time to exit the burning building. This course is an introduction to fire-rated doors and a general review of the fire codes that relate to fire doors and hardware, referencing 2012, 2015, and 2018 IBC; NFPA (National Fire Protection Association) regulations; and the ADAAG (Americans with Disabilities Act Accessibility Guidelines).

  • ( ~ 1 hour, 15 minutes ) 

    Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.

  • ( ~ 1 hour ) 

    Resiliency is a growing necessity. It is important to understand the impacts on the built environment resulting from natural and manmade disasters and disturbances and to design for those impacts now. Presented in this course is an overview of the benefits of using steel doors as part of a resilient design strategy for applications requiring resistance to blasts, tornadoes, and ballistics.

  • ( ~ 1 hour, 15 minutes ) 

    The use of life safety dampers is driven by requirements in various building codes. There are many different applications for which fire, fire/smoke, smoke, and/or ceiling radiation dampers can be used, each having its own specific purpose and unique installation requirements. This course gives an in-depth look at the different types of dampers and explains how and where they're each used and installed.

  • ( ~ 1 hour, 15 minutes ) 

    The diffuse light-transmitting and composite technology of translucent structural sandwich panels has increasingly caught the imagination of architects and designers because it is possible to maximize wall or roof daylighting while minimizing energy loss, with consequent savings in the running costs of heating, air conditioning, and artificial lighting. This course explores the fundamental connection between light and health by examining how translucent structural sandwich panels deliver glare-free, diffuse daylight deeper and more evenly into spaces with maximum thermal efficiency.

Displaying 1 - 25 of 116 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-116] NEXT LAST SHOW ALL