Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 51 - 75 of 407 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Third-party environmental product declarations (EPDs), using a life-cycle analysis (LCA) approach, provide a comprehensive analysis and quantification of a product’s sustainability. This course examines how EPDs can inform sustainable site furniture selection and how the use of sustainable site furniture can contribute to meeting various credit requirements of LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Designing to accommodate thermal movement is just one of the many critical details for the long-term success of a metal roof installation. This course covers the design and specification considerations and architectural details that impact project requirements, as well as the components and the energy-efficient features of metal roofing assemblies.

  • ( ~ 1 hour ) 

    Urban warming negatively impacts human health and quality of life, energy use, air quality, social equity, and economic prosperity. This course describes how solar reflective cool roof and wall materials help protect individuals and communities from the impacts of extreme heat and discusses the factors that influence energy savings and performance. The course also notes various climate resilience initiatives, green building programs, and energy codes that require or promote the use of cool roofs or walls and concludes by explaining the important role of third-party product ratings and the educational resources available online.

  • ( ~ 1 hour ) 

    Low Impact Development (LID) has several advantages over traditional stormwater management approaches. Since impervious pavement is the main source of stormwater runoff, LID strategies recommend permeable paving for hard surfaces. The course discusses LID, its goals and principles, and how they are achieved. It provides an overview of permeable pavements, and more particularly, plastic permeable grid paver systems and how they support LID goals.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

  • ( ~ 1 hour ) 

    Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.

  • ( ~ 1 hour, 15 minutes ) 

    An air curtain, also known as an air door, employs a controlled stream of air aimed across an opening to create an air seal. This seal separates different environments while allowing a smooth, unhindered flow of traffic and unobstructed vision through the opening. This course discusses how air curtains work and why they can contribute to occupant comfort, energy efficiency, and indoor air quality when the door is open. It also reviews how air curtains improve whole-building energy efficiency versus conventional methods.

  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.

  • ( ~ 1 hour ) 

    Elevators are integral to accessible, smooth, and efficient operations in many applications. For low-rise buildings, hydraulic elevators or gearless machine room-less (MRL) elevators are most common; this course compares the two in terms of sustainability and cost. Also presented are the history of the elevator, types of elevators suitable for installation in a range of buildings, the distinctions between proprietary and nonproprietary elevator systems, and recommendations on how to specify a nonproprietary system to maximize its long-term benefits.

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour, 15 minutes ) 

    Today’s buildings are evolving from independently functioning structures to intelligent buildings that interact with occupants and surrounding buildings. This trend has impacted the design, operation, and maintenance of data centers around the globe due to the increased demand for data and digital communication and has resulted in more high-performance data centers. This presentation addresses the specific needs of data centers and presents high-performance design solutions that support sustainable design.

  • ( ~ 1 hour ) 

    People are captivated by birds, and for many, they hold intrinsic value. However, millions of birds collide with glass every year, significantly impacting avian populations. This course examines the ecological services that birds perform that impact human wellness and safety and reviews how bird-friendly glass can mitigate collisions. Various bird-friendly glass examples are also identified, and design guidelines and existing legislation mandating bird-friendly buildings is discussed.

  • ( ~ 1 hour ) 

    Thermally controlled environments such as cold storage freezers and coolers, and food processing and packaging facilities take many different forms. Their performance and functionality depend on their project-specific requirements and can be affected by the conditions the materials and systems are subjected to. This course discusses how insulated metal panels (IMPs) perform the necessary functions to provide an effective energy-efficient building envelope and why they are suitable for use within temperature-controlled hygienic environments—where performance is critical.

  • ( ~ 1 hour ) 

    Commercial restrooms are used in various settings, from office buildings to hospitals. This course discusses how commercial restroom design can meet the needs of all users through accessibility, universal design, and inclusive design. The public nature of restrooms requires excellent air quality, a trusted level of cleanliness, durability, and water conservation. The importance of fixtures with features including touchless technology, vandalism resistance, and water efficiency is also discussed.

  • ( ~ 1 hour ) 

    Concrete is often the substrate for both new and existing floors. Transforming the surface into a finished floor is far more sustainable than consuming additional flooring materials, adhesives, and transportation-related energy to install a floor covering. This course discusses the stages and options of the concrete polishing process, recognizes benefits of recent advances in concrete densification chemistry, and provides an overview of the limitations and possibilities for concrete floor finishes.

  • ( ~ 1 hour ) 

    In light of the recent pandemic and the increasing frequency of wildfires, there is growing awareness around the impact of air quality, particularly in indoor environments. Building systems that manage air circulation and ventilation play a crucial role in supporting occupant health and well-being and can help meet indoor air quality credit requirements in the LEED® v5 Building Design and Construction, Interior Design and Construction, and Operations and Maintenance rating systems and the WELL Building Standard™ version 2. This course provides an overview of indoor air quality (IAQ) and offers strategies for improving it through responsive design and technology.

  • ( ~ 1 hour ) 

    Operable wall systems integrate the indoors and outdoors and define interior spaces, providing flexibility and additional usable area without increasing a building’s footprint. Occupants benefit from expansive daylighting and views as well as quick access to fresh air. This course describes the types of operable wall systems, how they contribute to sustainable design, and the various options and considerations for selecting the correct system.

  • ( ~ 1 hour ) 

    Architectural metal fabric is a dynamic interior and exterior material used to create beautiful and functional façades, balustrades, and screening for a wide variety of commercial and public structures. This course discusses applications for metal fabric and its performance benefits, including safety, security, solar management, and sustainability. It also discusses how coatings and graphics technologies can be incorporated into metal fabrics to enhance branding and visual identity.

  • ( ~ 1 hour ) 

    Not only is standing seam metal roofing (SSMR) robust and durable, but the seam itself also provides a convenient anchorage point for the mounting of rooftop equipment. This course reviews the features and advantages of SSMR in terms of durability and sustainability, and the appropriate attachment solutions for mounting equipment. The course focuses on nonpenetrating roof seam clamps and design considerations for their use with snow retention and solar panel systems.

  • ( ~ 1 hour ) 

    Now more than ever, architects and designers of commercial restroom facilities are responsible for meeting or exceeding guest and employee expectations for safety and cleanliness. Presented here are touchless fixtures for public restrooms, how restrooms affect sustainability goals, and the benefits of taking cost-saving measures.

  • ( ~ 1 hour, 15 minutes ) 

    Architects and designers have many options for specifying site furniture products for their projects. Selecting materials and finishes is an integral part of this process, yet making material selections has become more and more complex. The course examines conditions and constraints of outdoor environments; evaluates materials commonly used in outdoor applications; discusses using green building standards and rating systems, and the role of suppliers as resources for material selection; and provides examples of products that adhere to a higher environmental standard.

  • ( ~ 1 hour, 15 minutes ) 

    Growing US cities face escalating housing costs, residential and commercial displacement, homelessness, and the suburbanization of poverty. As increasing numbers of households are pushed out of the city by rising housing costs, they are burdened with long commutes and increased transportation costs while their carbon emissions escalate. These challenges are exacerbated by a deeply embedded policy—single-family zoning—that accounts for 75% or more of the land area allotted for housing in many fast-growing US cities. Part 2 of this two-part series outlines policies implemented at the city and state levels to make existing single-family neighborhoods more inclusive, equitable, walkable, and sustainable. It illustrates innovative case studies at the building scale to increase access to these neighborhoods for both renters and homeowners. In addition, it reviews efforts by architects and AIA chapters to address this issue despite the controversy that surrounds it. Each part of Right to the City can be taken as an individual course. Want free access to this and other NCARB courses? The NCARB Continuum Education Program offers free HSW CE courses to licensure candidates and architects who hold a current NCARB Certificate, which can be accessed through their NCARB record. Renew your NCARB Certificate , or get NCARB Certified .

     In order to download this course, a USD $25.00 fee must be paid.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete is one of the most widely used building materials throughout the world, and as such, it is in everyone’s best interest to consider more sustainable options. This course provides an overview of the properties of slag cement. Discussion topics include benefits, effects on plastics and hardened concrete, environmental profile including life cycle analysis (LCA) and environmental product declarations (EPDs), and various slag cement applications.

  • ( ~ 1 hour ) 

    Resilient flooring offers a wide variety of natural wood, stone, and abstract visual designs in numerous formats and installation options. Luxury vinyl flooring (LVF) and stone polymer composite (SPC) are types of resilient flooring designed to replicate the appearance of wood and stone without the labor, maintenance, or cost of natural materials. This course delves into the types, composition, performance features, and applications of LVF and SPC flooring designed for durable and aesthetically pleasing solutions for commercial and residential applications.

  • ( ~ 1 hour, 15 minutes ) 

    Metal roof and wall systems have long been specified for commercial, residential, and industrial buildings because they have a lengthy history of durability, reliability, and resilience. This course examines the attributes of metal panel systems and the design options that make metal-clad buildings sustainable, attractive, and suitable for a variety of applications and environmental conditions.

Displaying 51 - 75 of 407 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST