Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 51 - 75 of 400 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Undesirable acoustics in educational spaces adversely affect the learning and teaching processes. The impact on students’ academic achievement, social adaptation, and mental health can be profound and long lasting. This course examines the impact of different sound problems and presents solutions that create synergy between the architecture and the classroom environment to optimize student learning and engagement and teacher retention.

  • ( ~ 1 hour ) 

    Wood-plastic composite cladding offers a pleasing aesthetic and exceptional durability as part of a rainscreen assembly, enhancing the performance and longevity of the building envelope. Presented here are the functions and components of Lstiburek’s “perfect (universal) wall” design and a drained and ventilated rainscreen assembly. The course explores the composition, manufacture, benefits, design possibilities, and installation of wood-plastic composite cladding, as well as compliance with building codes and standards.

  • ( ~ 1 hour ) 

    Designers, building users, and managers are increasingly focused on building and occupant health as well as energy conservation. This course explores how mixed-mode (hybrid) ventilation systems address all these issues by improving the ratio of fresh air introduced into buildings while reducing energy needs and costs. It describes the benefits, elements, and workings of these systems and provides design guidance and illustrative case studies.

  • ( ~ 1 hour ) 

    Water is one of our most valuable resources, yet many states suffer water shortages due to preventable problems such as overuse and leakages. This course discusses the increased need for water conservation and examines the requirements in CALGreen and the LEED® v4.1, Green Globes®, and BREEAM In-Use green building rating systems. The EPA’s WaterSense® initiative is also discussed, along with case studies explaining the benefits of concealed toilet systems and their contribution to water conservation. This course is one of two identical courses titled Water Conservation: Initiatives and Standards . You will receive credit for taking only one of these courses.

  • ( ~ 1 hour ) 

    This introductory course on spray polyurethane foam (SPF) covers component chemistry, different types of SPF, and the proper use of SPF in construction applications. In addition, the course addresses code compliance related to SPF for residential and commercial construction, as well as safe SPF installation practices. Participants will come away with a strong knowledge of how the proper use and application of spray foam can improve the indoor environment and the durability of the built environment.

  • ( ~ 1 hour, 15 minutes ) 

    As interest in cross-laminated timber (CLT) buildings grows, the market for building enclosure products as a whole has yet to fully provide the water-resistant barriers, vapor retarders, and air barriers to optimally support the unique characteristics of wood. Furthermore, there are few building enclosure design guides specific to detailing wood-framed walls and roofs. This comprehensive course fills the gaps, providing detailed information on mass timber, building enclosure issues, the vapor-permeable technology available to address wood’s unique moisture characteristics, and a how-to guide on detailing the walls and roof of the enclosure.

  • ( ~ 1 hour, 15 minutes ) 

    This course provides an in-depth overview of recycling and waste diversion programs, focusing on effective planning, stakeholder engagement, and strategic bin placement. It offers practical guidance on selecting bins, designing consistent signage, and using communication strategies to improve user compliance. The course also explores additional methods to reduce waste at the source and covers techniques for continuous monitoring and adaptation to achieve long-term sustainability goals.

  • ( ~ 1 hour, 30 minutes ) 

    Within building spaces, noise can be reduced by using materials or assemblies that isolate sound or mitigate its transmission. To do this, it is important to understand how sound moves through building materials and partitions and the impact of sound mitigation products. In this course, we look at the basics of sound as well as techniques and products to prevent sound transmission.

  • ( ~ 1 hour ) 

    Leading aluminum extrusion manufacturers have established a variety of methods pertaining to material grade, surface protection, and component solutions to maximize the benefits of aluminum to suit a wide variety of applications. These advancements in technology have led to the development of sustainable wood-patterned aluminum products designed for exterior and interior applications. This course focuses on how these products can be used as a beautiful, high-performance, durable alternative for real wood in a range of applications, including screens, facades, decking, fencing, gates, cladding, and more.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20—70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour ) 

    The thermal and dual modification of wood are processes used to improve wood’s profile in terms of durability, dimensional stability, overall performance, and inherent resilience and sustainability. The resulting products can be utilized in many building applications, from decking and siding to pergolas and nonstructural beams, as well as paneling, soffits, and interior trim applications. This course explores the science behind the thermal and dual modification of wood. Examples of modified wood and case studies are also reviewed.  

  • ( ~ 1 hour ) 

    Light-manipulating glass products transport, redirect, refract, and reflect light to create architectural spaces that engage occupants with the unexpected interplay of light and shadow. This course explores these durable, functional products and their many options for customization. Also reviewed is how glass panels may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    Contrast therapy, the controlled use of heat and cold, has supported health, recovery, and wellness practices for centuries. This course examines the science, design, and construction of modern contrast therapy environments, including saunas, steam rooms, and cold rooms. It explains how temperature control, material specification, and system design influence safety, hygiene, and performance. The course also addresses how prefabricated systems improve installation efficiency, durability, and indoor environmental quality.

  • ( ~ 1 hour ) 

    As the architectural industry shifts toward more sustainable, low-maintenance materials, aluminum has emerged as a preferred choice for its eco-friendly properties, design versatility, and long-lasting performance. This course explores its manufacturing and installation processes, durable finishes, and wide-ranging applications, including cladding, soffits, battens, fencing, gates, screens, and pergolas. Discover how aluminum helps architects elevate design while meeting sustainability goals, particularly those of the LEED® v4.1 Building Design and Construction green building rating system.

  • ( ~ 1 hour ) 

    Architectural glazing systems are vital to building performance, influencing energy efficiency, structural integrity, and aesthetics. This course compares storefront and curtain wall systems, explores performance optimization strategies, and examines their contribution to sustainability. Participants will gain the technical knowledge needed to develop effective product specifications.

  • ( ~ 1 hour ) 

    Green building rating system crosswalks are tools that identify where systems are equivalent or aligned, providing a streamlined approach that can help projects achieve dual certifications. This course provides an overview of the crosswalks related to automated window shades and daylight control in LEED® v4.1 Building Design and Construction (BD+C): New Construction and Core and Shell, LEED v4.1 Interior Design and Construction (ID+C): Commercial Interiors, and the WELL Building Standard™ version 2. Also discussed are trade-offs between project parameters and rating system requirements that designers and architects must consider. 

  • ( ~ 1 hour ) 

    Daylight is an essential part of our health and well-being, but it needs management. Shading strives to maximize daylight without compromising building occupant comfort and well-being. This course explores the role daylight has within the built environment and its impact on occupants and energy usage, with a focus on how to better specify shadecloth based on factors such as project type, solar optical properties, shadecloth composition, and environmental factors.

  • ( ~ 1 hour ) 

    Rolling doors are used in heavy-duty, medium-duty, and light-duty applications for a wide range of commercial, industrial, and construction environments. This course provides a review of the features, components, options, and applications of various types of commercial rolling door products.

  • ( ~ 1 hour ) 

    Designing restrooms to allow for and maximize proper hygiene is important in reducing the spread of germs. This course discusses the elements of hygienic restroom design and how reducing required touchpoints helps to increase safety and cleanliness. The key steps in proper hand hygiene are also discussed. The course then focuses on hand dryers and considers their impact on hand hygiene and sustainability. The future of commercial restroom design is then explored.

  • ( ~ 1 hour ) 

    While providing fresh air intake and exhaust, reducing noise, and keeping out unwanted water and debris, louvers can also provide architectural style to a building design. This course discusses the aesthetics, performance, and weather resistance features of a variety of louver designs from the basic to the extreme. A discussion about the industry standards and test protocols for louver performance is included.

  • ( ~ 1 hour ) 

    Made from one of the hardest and most abundant minerals in nature, engineered quartz is a beautiful, durable surface solution for a wide range of commercial and residential applications desiring the beauty of natural stone without its drawbacks. The raw materials of quartz surfacing are harvested from the Earth and formed into slabs via an innovative production process, resulting in a homogenous, nonporous material with superior performance and low maintenance requirements. Reviewed in this course are the features, fabrication guidelines, and design trends of quartz surfacing.

  • ( ~ 1 hour, 15 minutes ) 

    Specifying door products that are durable enough to withstand the rigorous demands of high-traffic applications in the healthcare and hospitality industries is crucial to the long-term success of each installation. This course reviews traditional doorway materials and doorway protection options, and provides design solutions that utilize engineered polyethylene terephthalate (PETG) components that extend the life of the door assembly and minimize health and safety issues for the building occupants.

  • ( ~ 1 hour ) 

    Polyisocyanurate (polyiso) insulation is one of North America’s most widely used, readily available, and cost-effective insulation products. While polyiso is currently most commonly known for its use on roofs and walls, this course focuses on the many benefits of using it in below-grade installations in order to meet energy codes, maximize the building foundation’s thermal performance, and extend the overall life of the structure. The course explores the requirements for three primary characteristics of any below-grade insulation—thermal performance, water absorption, and load capacity—and describes how polyiso meets or exceeds those requirements and protects the foundation waterproofing system.

  • ( ~ 1 hour ) 

    A rooftop solar photovoltaic system offers myriad benefits to both building owners and the environment; to maximize the benefits, however, it is important to be aware of the potential causes and effects of problems with rooftop installations. This course presents the issues to consider to prevent damaging the roof, voiding the roofing warranty, and incurring additional costs. Solar system mounting options are explored in terms of how they can help eliminate concerns around rooftop installations.

Displaying 51 - 75 of 400 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST