Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 51 - 75 of 400 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    This course introduces the learner to the benefits and design advantages of porcelain surface material for both indoor and outdoor use in residential and commercial projects. Since it is a relatively new material in the US, we will review its components and manufacture and how they result in a product with exceptional characteristics for human health and durability. We'll also show and discuss indoor and outdoor applications, the variations available for vertical and horizontal applications, and the many design options. Finally, we’ll help the learner understand what is needed to design with this material and how to work with a fabricator.

  • ( ~ 1 hour ) 

    Often the largest access point in a building, sectional door systems play a significant role in controlling energy costs and supporting sustainable design in residential and commercial buildings. This course explores the specification considerations and the different types of sectional garage doors, as well as their role in enhancing the thermal performance of homes and commercial buildings.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour ) 

    This course provides an overview of types of hybrid vinyl flooring and how they contribute to long-term value through reduced maintenance needs, verified indoor air quality performance, and responsible material sourcing. It examines manufacturing processes, product content, and material transparency that influence consistency, durability, and environmental impact. These attributes can support credit achievement in green building programs such as the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by addressing low-emitting materials, responsible manufacturing, and product transparency.

  • ( ~ 1 hour ) 

    Incorporating sustainable building materials into design practices is essential for creating environmentally responsible, healthy, and resilient built environments. Thermal modification is a tested and proven chemical-free process for increasing the dimensional stability and long-term performance of wood while preserving its natural beauty. Presented are the thermal modification process, the attributes, applications, and favorable environmental impacts of thermally modified wood, and how thermally modified wood can contribute to achieving certification in LEED® v4.1 Building Design and Construction and Interior Design and Construction, Sustainable SITES Initiative® v2, the WELL Building Standard™ version 2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    The reasons for and benefits of adopting STEP have become increasingly clear as both national and international communities continue in their efforts to transition from dirty fuel sources to renewable ones. This course reviews the various systems and strategies that enable STEP, such as smart grids and microgrids, and explores strategies that STEP enables, such as integrated design processes, efficient water management, and energy innovation.

  • ( ~ 1 hour, 15 minutes ) 

    By design, automatic pedestrian doors provide easier, more convenient access than manual doors for a wide variety of building types, and their popularity in commercial design continues to grow. Reviewed in this course are the available options of automatic door solutions, including sliding, swinging, ICC/CCU, and revolving door systems. Also discussed are the code requirements and considerations relating to automatic doors for proper specification.

  • ( ~ 1 hour ) 

    Deck railing systems provide the finishing touch to an outdoor area, as well as safety and improved accessibility. Choosing a system that suits a deck project’s needs depends on a variety of factors, including cost, durability, style, customization, maintenance, and eco-friendliness. This course explores the many railing materials that are available, with a focus on aluminum, composite, and aluminum and composite railing systems, whose characteristics are ideal for most projects. 

  • ( ~ 1 hour, 15 minutes ) 

    A metal roof combines performance and aesthetics to give commercial and residential buildings strength, longevity, and character. This course examines the features and benefits of standing seam metal roofing and explains the factors to consider when selecting a project-specific metal roofing system.

  • ( ~ 1 hour ) 

    Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.

  • ( ~ 1 hour ) 

    This course delves into the increasing and expanding role of outdoor living and its importance in households, businesses, and communities. Reviewed are the styles and specification considerations of aluminum shading products. The focus is pergolas and cabanas made with dual-walled aluminum louvers that seal completely to block rain and snow and complement any architectural style.

  • ( ~ 1 hour ) 

    High-performance, fully composite insulated wall panels deliver all the benefits of factory precasting with load-bearing and energy efficiency performance from the lightest, thinnest panels possible. This course describes the makeup and cost efficiencies of composite precast panels, their benefits when made with carbon fiber grid shear trusses, and considerations for selecting among the insulation options. The majority of the course focuses on case studies of successful precast enclosure projects in a wide variety of building types across a range of markets.

  • ( ~ 1 hour, 15 minutes ) 

    An air curtain, also known as an air door, employs a controlled stream of air aimed across an opening to create an air seal. This seal separates different environments while allowing a smooth, unhindered flow of traffic and unobstructed vision through the opening. This course discusses how air curtains work and why they can contribute to occupant comfort, energy efficiency, and indoor air quality when the door is open. It also reviews how air curtains improve whole-building energy efficiency versus conventional methods.

  • ( ~ 1 hour, 15 minutes ) 

    Today’s louvers not only are functional but also offer enhanced architectural design to the façade of many buildings. More than just a hole in a wall, louvers are responsible for reducing or eliminating water infiltration and offer protection from heavy storms and hurricanes. Different types of louvers and their applications are discussed in this course as well as specific terminology, AMCA/BSRIA testing procedures, and the Certified Ratings Program.

  • ( ~ 1 hour, 15 minutes ) 

    Specifying door products that are durable enough to withstand the rigorous demands of high-traffic applications in the healthcare and hospitality industries is crucial to the long-term success of each installation. This course reviews traditional doorway materials and doorway protection options, and provides design solutions that utilize engineered polyethylene terephthalate (PETG) components that extend the life of the door assembly and minimize health and safety issues for the building occupants.

  • ( ~ 1 hour ) 

    Despite increasing awareness, stiffer regulations, and improved methodologies, construction waste remains a significant and growing portion of the overall waste stream. Building designers play a significant role in preventing the initial creation of waste by specifying waste-reducing building design and construction methodologies, as well as managing waste in their own offices. This course provides an overview of current construction waste and landfill issues, their potential impacts, and strategies for addressing them. It then focuses on an innovative material sample system that eliminates a sizable portion of the waste generated by construction material samples.

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour ) 

    This course examines how inclusive outdoor environments and well-designed site furnishings can promote health, safety, and well-being for all individuals. While everyone can benefit from being outdoors, many people experience exclusion due to design barriers in public spaces. Learners will explore strategies and furniture specifications, including layout and materials, that support accessible and inclusive design and contribute to LEED® v5 Building Design and Construction (BD+C), WELL Building Standard™ v2, and SITES® v2 goals. Case studies highlight real-world applications in communities, school campuses, and public spaces. 

  • ( ~ 1 hour ) 

    This course reviews the evolution of accessible restrooms and the recent, sudden prominence of universal (or adult) changing tables. We’ll examine how new changes to both the International Building Code® and statewide legislation affect public restroom design, and the profound impact universal changing tables can have on the lives of people with disabilities and their caregivers.

  • ( ~ 1 hour ) 

    Automated-shading systems are designed to maximize natural daylight, increase building energy efficiency, and ensure occupants have a comfortable environment with views to the outside. This course will explain how an automated shading system predicts, monitors, and responds to the daily microclimate surrounding a building to effectively manage daylight, solar-heat gain, occupant comfort levels, and energy use demands.

  • ( ~ 1 hour ) 

    In applications where wood may be exposed to moisture, insects, or fungal organisms, preservative-treated wood can ensure a project’s durability. This course reviews: the manufacturing process for pressure-treated wood; types of preservative treatments and the required levels of retention as dictated by the end-use application, desired service life, and exposure conditions; American Wood Protection Association (AWPA) Use Category standards; current issues concerning preserved wood in residential and commercial construction; and Best Management Practices (BMPs) for aquatic uses.

  • ( ~ 1 hour ) 

    Designing to accommodate thermal movement is just one of the many critical details for the long-term success of a metal roof installation. This course covers the design and specification considerations and architectural details that impact project requirements, as well as the components and the energy-efficient features of metal roofing assemblies.

  • ( ~ 1 hour ) 

    Now more than ever, the environmental impacts of products used in construction are a worldwide concern and one that the architecture and design (A&D) community is being asked to address in their work. Environmental product declarations (EPDs) are powerful tools when choosing materials for commercial projects. This course discusses how, where, and why to use EPDs to inform sustainable product selection and specification decisions and how EPDs are incorporated into key green building rating systems and codes, including LEED® v4.1 Building Design and Construction (BD+C) and Interior Design and Construction (ID+C), Green Globes® for New Construction (NC), and the International Green Construction Code® (IgCC®).

  • ( ~ 1 hour ) 

    Water management is a complex and significant process affecting all levels of planning and building design and is tasked with solving a number of new and emerging issues. This course reviews current stormwater and wastewater management issues and current practices and then takes a look at a number of new and emerging issues that water management plans need to address.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

Displaying 51 - 75 of 400 results.

FIRST PREV [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST