Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 276 - 300 of 401 results.

FIRST PREV [226-250] [251-275] [276-300] [301-325] [326-350] NEXT LAST

  • ( ~ 1 hour ) 

    Redwood lumber and timbers from sustainably managed and harvested forests offer warmth, durability, and strength in indoor and outdoor projects. This course covers the performance characteristics, environmental benefits, and applications of Redwood, including several case studies that highlight the beauty and versatility of Redwood products. Details are presented on differentiating the grades of Redwood, specifying the right grade for the project type, and the specification resources that are available.

  • ( ~ 1 hour ) 

    With the global rise in natural disasters and the increasing need for sustainable environments, resiliency has become a necessity in the design and building industries. This course provides an overview of resilient design, how it relates to building codes and standards, and the role it plays in ensuring the safety and sustainability of the built environment. It examines the role masonry construction plays in meeting resilient design goals and the inherent properties of masonry that make it resilient and provides examples and case studies of resilient design strategies.

  • ( ~ 1 hour, 15 minutes ) 

    Concrete is one of the most widely used building materials throughout the world, and as such, it is in everyone’s best interest to consider more sustainable options. This course provides an overview of the properties of slag cement. Discussion topics include benefits, effects on plastics and hardened concrete, environmental profile including life cycle analysis (LCA) and environmental product declarations (EPDs), and various slag cement applications.

  • ( ~ 1 hour ) 

    The surface coating is the first line of defense in prepainted metal, and one of the most important elements to consider as part of a metal purchase. Selecting the right coating, finish, and paint system can affect product lifespan, energy efficiency, and aesthetic appeal. This course discusses the composition of prepainted metal, its application and performance, and examines the building and environmental factors that may influence the type of paint system specified.

  • ( ~ 1 hour ) 

    Natural fibers have been used for over 2,000 years as a method to strengthen building materials. Cellulose fiber provides an excellent alternative to traditional secondary reinforcement, reducing plastic shrinkage cracks and improving durability, impact resistance, shatter resistance, and freeze/thaw resistance without compromising the appearance or finishability of a concrete surface. This course covers the evolution of fiber, its benefits, and why it is a sustainable material.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

  • ( ~ 1 hour, 15 minutes ) 

    Specifying door products that are durable enough to withstand the rigorous demands of high-traffic applications in the healthcare and hospitality industries is crucial to the long-term success of each installation. This course reviews traditional doorway materials and doorway protection options, and provides design solutions that utilize engineered polyethylene terephthalate (PETG) components that extend the life of the door assembly and minimize health and safety issues for the building occupants.

  • ( ~ 1 hour ) 

    Kitchen and bathroom sinks serve as both functional necessities and design focal points, seamlessly integrating into a variety of architectural styles and design visions. Participants will explore sink materials and design considerations to enhance safety, sustainability, accessibility, and user experience. The course provides an overview of commercial and residential applications and trends and strategies for incorporating sinks into building design.

  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.

  • ( ~ 1 hour ) 

    This course provides a comprehensive overview of quartz surfacing as a sustainable material in contemporary design. It examines the environmental impact, safety standards, and wide-ranging applications of quartz surfacing. The course focuses on manufacturing processes, performance characteristics, and the material’s contribution to sustainability, equipping participants with the knowledge to effectively utilize quartz surfacing in residential and commercial projects.

  • ( ~ 1 hour ) 

    Many communities face challenges related to the presence of harmful pollutants in their drinking water supply. This course examines the issues associated with these contaminants, focusing on lead, per- and polyfluoroalkyl substances (PFAS), and microplastics. It also discusses the government’s response to providing clean, safe water and innovations in point-of-use filtration systems designed to reduce toxic substances in drinking water and minimize the environmental impact of disposable plastic water bottles.

  • ( ~ 1 hour ) 

    Energy creation, distribution, and consumption are all in a period of transition. Understanding this transition and its benefits is critical to sustainable transitional energy planning (STEP). This course reviews the nature of the transition, the forces driving it, emerging energy systems and sources, and international and national examples. It details the process required for STEP and provides a comprehensive overview of the many renewable energy options now viable for community energy systems. It concludes with a series of illustrated sample plans and projects.

  • ( ~ 1 hour ) 

    With the advent of “cool” single-ply roofs featuring heat-reflective exterior surfaces and the use of mechanical attachment, new questions have emerged concerning the internal forces at play within the roofing system, especially in regard to vapor movement and the potential for moisture condensation within the roof. This course reviews the fundamentals of vapor movement in roofing systems, current roof condensation research and the tools available to assess roof condensation. It also provides the building design professional with strategies to deal effectively with moisture movement within the roofing system.

  • ( ~ 1 hour ) 

    The beautiful gray patina of zinc architectural metal has graced the rooftops of buildings in Europe for hundreds of years. This course examines the sustainable characteristics of zinc as a roofing material, including its 100% recyclability, zero VOC requirement, and low embodied energy production process. The life cycle analysis of zinc is examined, as is zinc’s long-term service life. Various types of roof and wall applications are also discussed.

  • ( ~ 1 hour ) 

    Architectural acoustic design focuses on managing airborne and impact sound within indoor and outdoor spaces. This course addresses the acoustic challenges associated with outdoor recreational spaces, focusing on the surge in pickleball popularity. Participants will learn the fundamentals of sound propagation in open-air environments and explore how modern acoustic products can reduce unwanted noise while maintaining functionality and the design intent. Acoustic solutions for indoor spaces requiring noise reduction are also covered, as well as the role of acoustic barriers in meeting the requirements of the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ v2.

  • ( ~ 1 hour ) 

    This course explains and illustrates how high-performance, fully composite insulated precast sandwich wall panels can be designed and specified to manage aesthetics, quality, performance, and cost. It explores the pros, cons, and attributes of wythe connectors such as carbon fiber reinforced polymer (CFRP) grid trusses, options for achieving continuous insulation, manufacturing and testing procedures, and strategies for managing costs. It concludes by providing illustrative sample installations to demonstrate the broad range of building types and appearances that can be created with insulated precast enclosures.

  • ( ~ 1 hour ) 

    Bamboo is a versatile building material that brings warmth and character to indoor applications such as flooring, furniture, and wall and ceiling panels; an innovative process also allows bamboo to be used outdoors in decks, soffits, and siding. This course reviews the material technologies that make bamboo products with reduced environmental impacts and better performance than traditional materials and discusses their potential to meet requirements of the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour ) 

    Incorporating sustainable building materials into design practices is essential for creating environmentally responsible, healthy, and resilient built environments. Thermal modification is a tested and proven chemical-free process for increasing the dimensional stability and long-term performance of wood while preserving its natural beauty. Presented are the thermal modification process, the attributes, applications, and favorable environmental impacts of thermally modified wood, and how thermally modified wood can contribute to achieving certification in LEED® v4.1 Building Design and Construction and Interior Design and Construction, Sustainable SITES Initiative® v2, the WELL Building Standard™ version 2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    A sound building envelope should be sustainable and provide fire resistance, good thermal performance, and protection from the elements. Mineral wool, fire rated insulated metal panels (IMPs) can improve building performance and contribute to a sustainable design strategy. Included in this course are discussions on mineral wool IMP characteristics and design options, performance advantages, and installation considerations. The course details how fire resistance is specified in the International Building Code and provides examples of fire wall and fire partition construction assemblies.

  • ( ~ 1 hour, 15 minutes ) 

    In the 1920s, aluminum turned the world of metals upside down with its benefits of light weight, strength, fabrication flexibility, and durability. Since then, finishing technology has provided a steady stream of protection and coloring improvements. This course explores the sustainability of aluminum, the anodizing process, and the performance characteristics of architectural anodized aluminum. It includes information to assist in the selection and specification of architectural anodized finishes for aluminum sheet, extrusions, and panels.

  • ( ~ 1 hour ) 

    Elevators are integral to accessible, smooth, and efficient operations in many applications. For low-rise buildings, hydraulic elevators or gearless machine room-less (MRL) elevators are most common; this course compares the two in terms of sustainability and cost. Also presented are the history of the elevator, types of elevators suitable for installation in a range of buildings, the distinctions between proprietary and nonproprietary elevator systems, and recommendations on how to specify a nonproprietary system to maximize its long-term benefits.

  • ( ~ 1 hour ) 

    As technology advances, lighting and power are becoming increasingly vital in enhancing user experience and building performance in healthcare environments. In this course, you’ll discover how flexible lighting solutions and their control features can transform both indoor and outdoor spaces, boosting health and productivity. You will also explore best practices for power and energy management, along with strategies for achieving safety compliance. Elevate your skills and learn how to create safe, tech-integrated spaces that support health and functionality.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward building with mass timber across the US and beyond is accelerating, requiring design professionals to understand the why, when, and how of designing a mass timber structure. The industry is dynamic and evolving along with the building codes that dictate mass timber system requirements and limits. This course identifies the considerations a designer should review before starting a mass timber project, including feasibility, trade partnering, material selection, building codes, logistics, and their overall impact on creating a successful mass timber project.

Displaying 276 - 300 of 401 results.

FIRST PREV [226-250] [251-275] [276-300] [301-325] [326-350] NEXT LAST