Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 226 - 250 of 400 results.

FIRST PREV [176-200] [201-225] [226-250] [251-275] [276-300] NEXT LAST

  • ( ~ 1 hour ) 

    The United Nations has set 2030 as the deadline for member nations to achieve the 17 Sustainable Development Goals. The construction industry has set complementary goals, including the AIA 2030 Commitment to reach net zero emissions in the built environment by 2030. This course discusses how circular economy building products are necessary to achieve sustainable design goals and presents the case study of Kohler WasteLAB, a small manufacturing business within Kohler Company that creates beautiful products for the home from waste.

  • ( ~ 1 hour ) 

    Communities need accessible, versatile surfaces for play and relaxation for people of all ages and abilities. Modern landscape synthetic turf options are specifically formulated for public recreation spaces frequented by adults, children, and pets. This course reviews the health benefits of being outdoors, the history and fabrication of synthetic turf, the design considerations for various recreation applications, and synthetic turf’s performance and sustainability characteristics.

  • ( ~ 1 hour ) 

    Through sustainable management, the forests of New England have had a remarkable comeback since the 1830s, with eastern white pine being the most represented softwood in these forests. This light, yet strong wood species has been used for generations and today, meets the requirements of a renewable and sustainable building material. This course reviews eastern white pine’s contribution to sustainability, its grading rules, wood products, and many applications.

  • ( ~ 1 hour ) 

    When building professionals gather, as they often do these days, to confer under the banner of ESG, the E tends to get the lion's share of the airtime. After all, there is a direct and readily understandable connection between buildings and environmental sustainability, and many of us have devoted significant time and effort to educating ourselves in best practices around this important facet of professional practice. But what about the S? How do those of us engaged in the business of the built environment drive bona fide social impact through the work we do? In fact, there are numerous paths available, and arguably, real social equity is reliant on a foundation of safe and stable housing as much as any other factor. During this webinar, we will explore needs and solutions in the realm of housing affordability and access while specifically touching on both our existing housing stock and impact-focused strategies for bringing new housing online.

  • ( ~ 1 hour ) 

    As the population grows, urban centers are becoming denser and land more valuable. Architects are looking for parking solutions that provide space-saving benefits to high-density residential and commercial developments. This course discusses the performance of mechanical parking systems, also known as automated parking or high-density parking (HDP), and how they reduce space required for vehicle storage, increase safety, and minimize the environmental impact of parking vehicles. Specifications and installation are also examined.

  • ( ~ 15 minutes ) 

    Policies targeting the reduction of carbon emissions associated with building products require the disclosure of embodied carbon data to inform those policies and verify whether reduction targets or incentive requirements have been met. This course aims to provide a guide to collecting high-quality embodied carbon data.

  • ( ~ 1 hour ) 

    Concrete is the most widely used construction material in the world, second only to water. Over time, as a result of the build-up of atmospheric compounds in the surrounding environment, concrete will become discolored, stained, dirty, and dingy. This course examines photocatalytic technology which accelerates self-cleaning and fights air pollution while maintaining the mechanical and physical properties of traditional concrete.

  • ( ~ 30 minutes ) 

    As synthetic turf systems evolve as functional and aesthetic landscape solutions, conversations about sustainability, particularly environmental impacts, are essential. This course addresses the sustainability of synthetic turf from the triple-bottom-line perspective: profit, people, and planet. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.

  • ( ~ 1 hour, 15 minutes ) 

    ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.

  • ( ~ 1 hour ) 

    When deciding on outdoor cabinetry, understanding the available material options is essential to the selection of a long-lasting, sustainable choice. This course reviews the pros and cons of these options, with a focus on the attributes, sustainability, and performance characteristics of marine-grade high-density polyethylene (HDPE) material, engineered to withstand extreme conditions while maintaining optimal structural integrity.

  • ( ~ 1 hour ) 

    Building a stronger connection with nature is critical to maintaining human health and well-being. Composite wood decking is a durable, environmentally sustainable product that can help build links with nature through outdoor living spaces. This course examines the different decking options and explains the sustainability benefits of using composite decking and how it can help meet green building requirements. Various design innovations that enhance occupant well-being are also discussed.

  • ( ~ 1 hour ) 

    Keeping bathrooms and kitchens clean and hygienic is essential to health and well-being but can be challenging in busy family homes. This course introduces some basic principles of home hygiene, provides an overview of the most effective cleaning strategies, and shows how contemporary kitchen and bathroom technology and design innovations can make hygienic cleaning substantially easier. Technologies discussed include touchless activation, intelligent toilets, bidet seats, and antimicrobial surfaces.

  • ( ~ 1 hour, 30 minutes ) 

    The key to an energy-efficient metal building is the implementation of a continuous insulation system that virtually eliminates thermal bridging and prevents condensation. This course discusses how using thermal spacer blocks and metal building insulation in the building envelope increases energy performance, protects against condensation, and meets stringent energy code requirements.

  • ( ~ 1 hour ) 

    The acoustical comfort level in the workplace is a key measure of the quality of the indoor environment for building occupants. This course explores key concepts and characteristics of sound, as well as speech intelligibility and privacy and their associated acoustical remedies. Also presented is the use of sound absorbers and diffusers as acoustical solutions to noise problems.

  • ( ~ 1 hour ) 

    Exterior wall systems are the dividing line between the exterior and the interior and must address several fundamental performance goals of the building envelope. This course reviews traditional rainscreen design and examines why, with its single-component construction, an insulated composite backup wall system is a vast improvement over traditional multicomponent building technology.

  • ( ~ 1 hour ) 

    This course reviews the evolution of accessible restrooms and the recent, sudden prominence of universal (or adult) changing tables. We’ll examine how new changes to both the International Building Code® and statewide legislation affect public restroom design, and the profound impact universal changing tables can have on the lives of people with disabilities and their caregivers.

  • ( ~ 1 hour, 15 minutes ) 

    The Environmental Product Declaration (EPD) is not just an idea about how to “grade the greenness” of products; it is a well-developed, globally recognized way to make responsible comparisons and decisions regarding sustainable material design and continuous improvement. This course discusses the concept of the EPD as applied to building materials and how to integrate EPDs into design and product selection decisions. Detailed information from different thermal insulation EPDs is used to demonstrate how thermal insulation provides a unique and significant payback in terms of energy and environmental impacts.

  • ( ~ 1 hour ) 

    The growing global population is creating an increased demand for resources. As a result, there is a need to replace fossil-based, nonrenewable building materials with more bio-based materials, such as bamboo. This course describes the properties of bamboo that make it a more sustainable choice, including its fast growth and CO2 saving and storing potential. It also discusses how active bamboo reforestation and the use of durable bamboo products can lead to CO2 reduction across many industries.

  • ( ~ 1 hour ) 

    Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.

  • ( ~ 1 hour, 15 minutes ) 

    Insulation can help increase overall energy efficiency, minimize the spread of fire, manage risks associated with moisture and mold, and improve occupant comfort. Choosing the right insulation and putting it in the right location is becoming one of the most important decisions in design, construction, and retrofit. Reviewed in this course are the features, benefits, and design and installation considerations related to mineral wool continuous insulation.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.

  • ( ~ 1 hour, 15 minutes ) 

    Selecting flooring is an important decision, but equal emphasis should be placed on proper surface preparation to avoid costly flooring failures. This course reviews best practices for a typical hardwood flooring installation and discusses the innovative options that consolidate products and steps, saving time and money while enhancing certain performance characteristics.

  • ( ~ 1 hour ) 

    Quartz surfacing is a man-made material consisting of up to 93% natural quartz crystal. In this course, you will discover the other components behind the beauty, durability, and flexibility of this surfacing material. You will see the composition, production, and quality assurance processes that go into making the material and the resultant attributes and capabilities, as well as the installation basics of quartz surfacing materials.

  • ( ~ 1 hour ) 

    Architectural acoustic design focuses on managing airborne and impact sound within indoor and outdoor spaces. This course addresses the acoustic challenges associated with outdoor recreational spaces, focusing on the surge in pickleball popularity. Participants will learn the fundamentals of sound propagation in open-air environments and explore how modern acoustic products can reduce unwanted noise while maintaining functionality and the design intent. Acoustic solutions for indoor spaces requiring noise reduction are also covered, as well as the role of acoustic barriers in meeting the requirements of the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ v2.

Displaying 226 - 250 of 400 results.

FIRST PREV [176-200] [201-225] [226-250] [251-275] [276-300] NEXT LAST