Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 176 - 200 of 393 results.

FIRST PREV [126-150] [151-175] [176-200] [201-225] [226-250] NEXT LAST

  • ( ~ 1 hour ) 

    Material transparency is a growing initiative in the green and healthy building arena. This course reviews legislation that provides the baseline for healthy and sustainable materials and discusses the limitations of those regulations. It also explores the predominant green building programs and how material transparency can help achieve certification. Learners will leave this course with an understanding of how to access, analyze, and apply material transparency to their projects and leverage initiatives to support a healthier, more sustainable building industry.

  • ( ~ 1 hour, 15 minutes ) 

    Stone has long been valued for its durability, reliability, and beauty. Today, natural thin stone veneer offers these benefits with reduced weight, cost, and environmental impact. This course explores its applications in commercial and residential settings, covering aesthetics, performance, and key specification standards. It also examines the sustainability profile of thin stone veneer compared to full natural and manufactured stone, highlighting an industry-wide LCA, responsible quarrying and processing, and how collaboration with fabricators can reduce environmental impact while preserving quality and design integrity.

  • ( ~ 1 hour ) 

    Exterior shading devices offer a number of advantages that contribute to a more sustainable building, including minimizing cooling costs, reducing peak electricity demand, and controlling glare. These benefits result in greater occupant comfort and improved productivity. This course provides a review of exterior aluminum shading device systems, including the components, finishes, and design and engineering considerations, as well as a discussion of how shading strategies contribute to LEED® certification.

  • ( ~ 1 hour ) 

    Building science experts acknowledge the need for drainage in both vertical and horizontal applications in order to eliminate moisture issues and extend the life of the building. This course examines foundation wall, green roof, and plaza deck applications and discusses the factors that impact drainage, including soil permeability, saturation, land cover, and loading. Flow rate standards are discussed, and drainage composite mat installation is explained.

  • ( ~ 1 hour ) 

    Fiberglass doors offer design professionals beautiful and durable options for their projects. This course discusses the physical and structural components of fiberglass entry doors and compares their performance to that of wood and steel doors. Described here are the National Fenestration Rating Council rating system, the North American Fenestration Standard, and the use of fiberglass entry doors to fulfill guidelines relating to ENERGY STAR® and LEED®.

  • ( ~ 1 hour ) 

    Thermoplastic single-ply roofing systems have over a half century of proven performance. This course outlines their history and the various types of membranes that have been developed and identifies the individual attributes and benefits of each type. This highly illustrated course also discusses the cooling benefits of white and green roofs, the numerous single-ply attachment and warranty options, and descriptions of sample installations.

  • ( ~ 1 hour ) 

    Acrylic solid surface is an attractive design solution, delivering enhanced aesthetics combined with superior performance properties. This course compares the characteristics of 100% acrylic solid surface to other surface materials and reviews the driving factors that contribute to its growing role in sustainable design strategies. Also discussed are the manufacturing, fabricating, and thermoforming processes of acrylic solid surface and the related green standards and certification programs.

  • ( ~ 1 hour ) 

    Concrete products such as precast pieces, pavers, and terrazzo have long provided builders with a flexible range of options for their projects. Beyond their versatility, these concrete products are highly sustainable, thanks to their ability to be recycled, low carbon footprint, and long life span.

  • ( ~ 1 hour, 15 minutes ) 

    Today, architects and designers need to give special consideration to building acoustics when developing plans for new and newly renovated construction projects. Excessive noise in any environment is considered a serious problem that can negatively impact occupant comfort, leading to learning difficulties, sleep deprivation, delayed recovery from illness, and lack of privacy. Sound basics are discussed in this course, and STC, IIC, and sound attenuation (reduction) techniques are explained. Various case studies are examined to develop further understanding of the performance of common sound abatement assemblies that are essential for occupant well-being and comfort.

  • ( ~ 1 hour ) 

    Biophilic design is a methodology for designing buildings and landscapes that improve human health and well-being while fostering a deeper appreciation for the natural world. This course provides an overview of biophilic design and its frameworks and how it can help projects earn certification through LEED® v4.1 Building Design and Construction (BD+C): New Construction, WELL Building Standard™ version 2, Sustainable SITES Initiative® v2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    Wood is both beautiful and practical but lacks long-term durability when used outdoors. Acetylation changes the material properties of the wood at the molecular level to improve its stability and weathering capabilities. This course reviews the acetylation process, its impact on wood performance, and how and where this type of wood can be used. Also discussed are the green features of acetylated wood and how it can contribute toward earning points in the LEED® v4 green building rating system.

  • ( ~ 1 hour, 15 minutes ) 

    Outdoor shelters not only provide protection from the elements but also add visual interest to outdoor public spaces, and advances in shelter design are changing the way the recreational landscape is defined. This course looks at current capabilities in shelter design, compares pre-engineered to site-built shelters, and focuses on the advantages of using a manufacturer who offers design and engineering services. Sustainable aspects of shelter design are also discussed.

  • ( ~ 1 hour ) 

    As technology advances, lighting and power are becoming increasingly vital in enhancing user experience and building performance in healthcare environments. In this course, you’ll discover how flexible lighting solutions and their control features can transform both indoor and outdoor spaces, boosting health and productivity. You will also explore best practices for power and energy management, along with strategies for achieving safety compliance. Elevate your skills and learn how to create safe, tech-integrated spaces that support health and functionality.

  • ( ~ 1 hour, 30 minutes ) 

    Healthcare environments require high-performance, durable, and sustainable materials to meet the ever-increasing demands for the health and safety of patients and staff. Vinyl provides a reliable and proven solution that supports infection control measures, the need for long-lasting products, and the replacement of infrastructure that supports health and wellness, clean water, reduced carbon footprint, and long product service life. Vinyl is a material of choice for interiors as well as the core and shell of healthcare buildings. Chemistry and formulations are part of successful product performance; utilizing life cycle approaches to product selection, meeting owner project requirements, and supporting criteria within green building certifications are all part of the vinyl story.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward more sustainable, healthy, and energy-conserving enclosures has brought building science and moisture management to the forefront of daily conversation for professionals in the construction industry. In this course, we delve into the science behind current practices and explore the role of building envelopes, optimal wall assemblies, and enclosures in vapor, water, air, and thermal control.

  • ( ~ 1 hour ) 

    Natural fibers have been used for over 2,000 years as a method to strengthen building materials. Cellulose fiber provides an excellent alternative to traditional secondary reinforcement, reducing plastic shrinkage cracks and improving durability, impact resistance, shatter resistance, and freeze/thaw resistance without compromising the appearance or finishability of a concrete surface. This course covers the evolution of fiber, its benefits, and why it is a sustainable material.

  • ( ~ 1 hour ) 

    This course explores how to use coil and extrusion coatings in the built environment and how innovative coatings contribute to sustainability initiatives.

  • ( ~ 1 hour ) 

    Single-skin metal siding can be used for a wide range of projects, from commercial buildings to educational, healthcare, residential, agricultural, and even high-end architectural designs. These siding panels can also contribute to green designs and certification programs. This course explores the different types of single-skin metal siding, specification details, and performance and design considerations.

  • ( ~ 1 hour ) 

    With the ever-increasing focus on the sustainable built environment, building owners, architects, engineers, and contractors are incorporating structural steel into their designs. Presented here is a comprehensive view of the cradle-to-cradle structural steel supply chain from a sustainability perspective. Also discussed are steel production and design, steel’s potential contribution to LEED v4 credits, thermal capacity, and the environmental and life cycle benefits of prefabricated fireproof steel columns.

  • ( ~ 1 hour ) 

    This course explains and illustrates how high-performance, fully composite insulated precast sandwich wall panels can be designed and specified to manage aesthetics, quality, performance, and cost. It explores the pros, cons, and attributes of wythe connectors such as carbon fiber reinforced polymer (CFRP) grid trusses, options for achieving continuous insulation, manufacturing and testing procedures, and strategies for managing costs. It concludes by providing illustrative sample installations to demonstrate the broad range of building types and appearances that can be created with insulated precast enclosures.

  • ( ~ 1 hour ) 

    Low Impact Development (LID) has several advantages over traditional stormwater management approaches. Since impervious pavement is the main source of stormwater runoff, LID strategies recommend permeable paving for hard surfaces. The course discusses LID, its goals and principles, and how they are achieved. It provides an overview of permeable pavements, and more particularly, plastic permeable grid paver systems and how they support LID goals.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour ) 

    The demand for mass timber construction has increased significantly in recent years due to its numerous benefits, including sustainability, strength, faster construction times, cost savings, and a natural wood aesthetic. However, a major drawback of mass timber construction is its poor acoustical performance. This course examines the various mass timber construction types and provides acoustical solutions to meet and surpass building codes.

  • ( ~ 1 hour, 15 minutes ) 

    Strength and conditioning facilities are designed for high-performance athlete training at the professional, international, national, collegiate, and high school levels. These facilities are fundamentally different than commercial fitness centers (which focus on improving general fitness) and must be custom designed for the athletes' sport-specific training programs. This course reviews key design considerations for these facilities, including specialized flooring construction required for athlete safety and preservation of building structure.

  • ( ~ 1 hour ) 

    Implementing daylight in buildings reduces artificial lighting energy, costs, and CO2 emissions and improves the welfare and performance of occupants. This course examines the benefits of daylight and explains how tubular daylighting devices (TDDs) can efficiently and effectively supply it in an energy-efficient manner, how they optimize all levels of daylight, and how they avoid issues such as glare and heat gain associated with windows and conventional skylights. Applicable credits and features in LEED® v4.1 Building Design and Construction, Interior Design and Construction, and Operations and Maintenance and the WELL Building Standard™ version 2 are noted. The course concludes with several sample commercial installations.

Displaying 176 - 200 of 393 results.

FIRST PREV [126-150] [151-175] [176-200] [201-225] [226-250] NEXT LAST