Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 151 - 175 of 398 results.

FIRST PREV [101-125] [126-150] [151-175] [176-200] [201-225] NEXT LAST

  • ( ~ 1 hour, 30 minutes ) 

    Changing climate and land use patterns have necessitated a greater focus on stormwater management. The trench drain industry has developed in a rather fragmented way over the decades, with each manufacturer using their own unique reference points for dimension, load rating, and other criteria. The purpose of this course is to clear up the resulting confusion and provide best practices and a real-world understanding of the multiple variables at play on the project level.

  • ( ~ 1 hour ) 

    This course explores how to use coil and extrusion coatings in the built environment and how innovative coatings contribute to sustainability initiatives.

  • ( ~ 1 hour, 15 minutes ) 

    Advancements in composite decking technology are transforming the way outdoor spaces are designed and built, particularly in multifamily settings where effective water management is critical. This course introduces mineral-based composite decking systems and their role in eliminating the need for secondary membranes. Learners will explore how these all-in-one solutions streamline installation, reduce long-term maintenance costs, and help prevent common issues such as mold, decay, and water intrusion. The course also highlights how well-designed outdoor amenities can foster social connection, support resident well-being, and enhance the value of shared spaces.

  • ( ~ 1 hour ) 

    While providing fresh air intake and exhaust, reducing noise, and keeping out unwanted water and debris, louvers can also provide architectural style to a building design. This course discusses the aesthetics, performance, and weather resistance features of a variety of louver designs from the basic to the extreme. A discussion about the industry standards and test protocols for louver performance is included.

  • ( ~ 1 hour ) 

    The issue of lead in drinking water is a significant concern that affects many communities. This course explores the harmful effects of lead consumption through drinking water. It addresses fundamental questions about lead’s common sources, how it enters our water supply, and the populations at high risk. Additionally, the course reviews water regulations and strategies for safeguarding against this widespread toxin, emphasizing approaches to reduce lead contamination through the use of filtered water delivery systems.

  • ( ~ 1 hour ) 

    With office vacancies rising amid changes in technology and the growth of working from home during the COVID pandemic, the practice of converting office buildings into residential spaces such as apartments, condominiums, and hotels has been embraced by communities and all levels of government as a solution to the housing crisis. This course examines the factors behind these conversions, with emphasis on the use of in-wall toilet systems as a solution to design, economic, and sustainability concerns.

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour, 15 minutes ) 

    The diffuse light-transmitting and composite technology of translucent structural sandwich panels has increasingly caught the imagination of architects and designers because it is possible to maximize wall or roof daylighting while minimizing energy loss, with consequent savings in the running costs of heating, air conditioning, and artificial lighting. This course explores the fundamental connection between light and health by examining how translucent structural sandwich panels deliver glare-free, diffuse daylight deeper and more evenly into spaces with maximum thermal efficiency.

  • ( ~ 1 hour ) 

    The planet is currently in a water scarcity crisis, which is significantly affected by toilet water usage. This course examines the current plumbing codes, standards, and regulations that address toilet water usage, the need for and benefits of going beyond current standards, and the goals of a variety of beyond-the-code voluntary standards and rating systems, such as LEED v4 BD+C and ICC 700 National Green Building Standard®. It explains the various types of low-flow and ultra-low-flow toilets, their pros and cons, and their selection criteria. It concludes with a sampling of successful cost- and water-saving installations.

  • ( ~ 1 hour, 15 minutes ) 

    Metal is a versatile building material, boasting both historical credentials and modern aesthetics. To earn the right to rise to the top as the material of choice, however, metal must also demonstrate cost efficiency, durability, and minimal environmental impact. In this course, we will examine the value of metal roofs and walls during initial construction and through a building’s life cycle and illustrate metal’s benefits with a number of case studies.

  • ( ~ 1 hour ) 

    Exterior wall systems are the dividing line between the exterior and the interior and must address several fundamental performance goals of the building envelope. This course reviews traditional rainscreen design and examines why, with its single-component construction, an insulated composite backup wall system is a vast improvement over traditional multicomponent building technology.

  • ( ~ 1 hour ) 

    Building a stronger connection with nature is critical to maintaining human health and well-being. Composite wood decking is a durable, environmentally sustainable product that can help build links with nature through outdoor living spaces. This course examines the different decking options and explains the sustainability benefits of using composite decking and how it can help meet green building requirements. Various design innovations that enhance occupant well-being are also discussed.

  • ( ~ 1 hour ) 

    The demand for mass timber construction has increased significantly in recent years due to its numerous benefits, including sustainability, strength, faster construction times, cost savings, and a natural wood aesthetic. However, a major drawback of mass timber construction is its poor acoustical performance. This course examines the various mass timber construction types and provides acoustical solutions to meet and surpass building codes.

  • ( ~ 1 hour ) 

    Protected membrane roof (PMR) assemblies have been widely adopted in low-slope commercial buildings since the late 1960s. Also known as inverted or upside-down roofs, PMR assemblies move the waterproofing membrane from the top of the roof assembly to the surface of the structural deck. This course explores how PMR assemblies provide several advantages over conventional roof assemblies, offering superior protection against water penetration and enhanced energy efficiency. The course also shows how PMR assemblies allow for the creation of green roofs or blue roof systems. With a proven record of reliability, PMR assemblies present a compelling solution for architects seeking innovative, sustainable, and efficient roofing options.

  • ( ~ 1 hour ) 

    The fireplace has always been a focal point in any home, providing warmth and a place for friends and family to gather. Today’s wood-burning fireplaces, inserts, and stoves have become increasingly efficient and clean burning. This course examines using wood as a fuel source and discusses the many characteristics that can affect heat production, efficiency, and burn time. New burning technologies that meet EPA certification requirements for released particulate matter are summarized, as are design and installation specifications.

  • ( ~ 1 hour ) 

    Sound control is a critical element in a building’s design. We all think of the walls, ceiling, and floor when discussing sound attenuation, but without the proper acoustic door, the sound-control goals in an acoustic plan may not be met. This course reviews healthy sound levels and how to test and identify target STC ratings. Also discussed are the elements of acoustic door assemblies and how they address fire ratings and ADA compliance, contribute to LEED® certification and green building, and provide security for classified files and electronic data.

  • ( ~ 1 hour, 15 minutes ) 

    The Environmental Product Declaration (EPD) is not just an idea about how to “grade the greenness” of products; it is a well-developed, globally recognized way to make responsible comparisons and decisions regarding sustainable material design and continuous improvement. This course discusses the concept of the EPD as applied to building materials and how to integrate EPDs into design and product selection decisions. Detailed information from different thermal insulation EPDs is used to demonstrate how thermal insulation provides a unique and significant payback in terms of energy and environmental impacts.

  • ( ~ 1 hour ) 

    At this time, there are no national or state codes relating to snow retention for roofing applications, even in the heaviest snow load areas. Consequently, it is very important for building professionals to take extra care when designing a snow retention system for installations in snowy environments. This course provides a review of the problems and solutions associated with roofing in cold climates, including a discussion on the proper engineering of snow retention devices. There are many dangers involved if the appropriate considerations are not made while building and maintaining a roof in an alpine region.

  • ( ~ 1 hour ) 

    Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.

  • ( ~ 1 hour, 15 minutes ) 

    This course is designed to educate and raise awareness among landscapers and architects to assist them in making correct turfgrass selections for their projects. The focus is on warm-season sod turfgrasses suited for the southern and midsection tiers of the United States. The selection criteria and best practices for sodding and maintaining turfgrass are reviewed, along with an introduction to proprietary cultivars designed to offer improved aesthetics, greater tolerances, and fewer inputs.

  • ( ~ 1 hour ) 

    Synthetic or artificial grass bears virtually no resemblance to its early version produced over fifty years ago. The current product is much more aesthetically pleasing, safer, softer, and durable, made with environmentally friendly materials, highly customizable to suit many indoor and outdoor uses, and recyclable and nonflammable. This course details the many sustainable attributes of this material; its benefits, construction, and certifications; and numerous sample installations.

  • ( ~ 1 hour, 15 minutes ) 

    Universal design is not a new concept; however, it is time for a paradigm shift. Considering ADA design, universal design, and living in place, should designers now be offering universal design solutions to all clients, regardless of age or ability? This course reviews both ADA and universal design guidelines and discusses compelling reasons for recommending universal design in your kitchen and bathroom projects. Various kitchen and bathroom applications are discussed in detail.

  • ( ~ 1 hour ) 

    Retrofitting and replacing roof systems are essential aspects of the construction industry and offer opportunities to reduce a building’s energy consumption. Sustainable retrofitting of roofs with durable, energy-efficient materials helps reduce waste and conserve resources while promoting ecofriendly building practices. This course gives an overview of expanded polystyrene (EPS) insulation and innovative roof systems that are designed to enhance building efficiency.

  • ( ~ 1 hour ) 

    Air barriers improve the health and comfort of building occupants, improve energy efficiency, and prevent premature degradation of materials, increasing the structure’s life cycle. A successful air and moisture barrier system means under-slab, below-grade, and above-grade systems must work together to provide a continuous barrier. This course looks at above-grade air barrier systems and their types and components. Continuity and compatibility, specification, and installation challenges are also considered.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

Displaying 151 - 175 of 398 results.

FIRST PREV [101-125] [126-150] [151-175] [176-200] [201-225] NEXT LAST