Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 126 - 150 of 397 results.

FIRST PREV [76-100] [101-125] [126-150] [151-175] [176-200] NEXT LAST

  • ( ~ 1 hour ) 

    The enhanced need for water conservation and a decrease of harmful runoff resulting from lawn maintenance has pushed the demand for environmentally-friendly alternatives for landscaping and recreational areas. Explored in this course are the uses, benefits, and specification and installation considerations of artificial turf products that replicate a natural grass look and feel in any environment

  • ( ~ 1 hour ) 

    Exterior wall systems are the dividing line between the exterior and the interior and must address several fundamental performance goals of the building envelope. This course reviews traditional rainscreen design and examines why, with its single-component construction, an insulated composite backup wall system is a vast improvement over traditional multicomponent building technology.

  • ( ~ 1 hour ) 

    Made from one of the hardest and most abundant minerals in nature, engineered quartz is a beautiful, durable surface solution for a wide range of commercial and residential applications desiring the beauty of natural stone without its drawbacks. The raw materials of quartz surfacing are harvested from the Earth and formed into slabs via an innovative production process, resulting in a homogenous, nonporous material with superior performance and low maintenance requirements. Reviewed in this course are the features, fabrication guidelines, and design trends of quartz surfacing.

  • ( ~ 1 hour ) 

    Since its introduction in the early 20th century, high-strength fiber cement has proven to be an affordable, sturdy construction material. Technological advances in recent years have increased its versatility in terms of color range and usage for ventilated rainscreen facades. This course examines what high-strength fiber cement is and how it can improve the structural sustainability of buildings and enhance creative freedom in design.

  • ( ~ 1 hour ) 

    Modern landscape lighting systems featuring integrated automation and intuitive smartphone controls have revolutionized the industry. Designers can easily transform front lawns from eerie Halloween displays to soft, romantic ambiances with just the touch of a button. These new technologies provide seamless control and user-friendly interfaces while enhancing home occupants’ safety and security. Additionally, the widespread adoption of LED lights within those systems has improved energy efficiency and expanded the range of available options. This course explores some of the key principles of landscape lighting design and the various related fixture types and highlights some of the latest advancements in smart landscape lighting technology.

  • ( ~ 1 hour ) 

    Structural HDPE plastic lumber offers strength, durability, and design versatility and is a sustainable alternative to traditional building materials. This course examines the types of structural HDPE plastic lumber and their manufacturing processes and provides technical information on performance attributes, suitable applications, installation considerations, and design guidelines. Comparisons are made to wood and wood-plastic composite lumber. Also presented is how recycled HDPE plastic lumber may help meet credit requirements in the Sustainable SITES Initiative® (SITES® v2) and LEED® v4.1 Building Design and Construction (BD+C) and Residential BD+C rating systems. Case studies demonstrate the exemplary performance of structural HDPE plastic lumber in aggressive environmental conditions.

  • ( ~ 1 hour ) 

    In the last couple of decades, houses have become progressively more airtight due to energy efficiency and cost concerns. While air infiltration and exfiltration rates have been significantly reduced, the need for an efficient ventilation system has become extremely important. This course evaluates different types of mechanical ventilation systems and discusses why heat recovery ventilation (HRV) and energy recovery ventilation (ERV) systems are characterized by a high level of energy efficiency and as an effective means for improving indoor air quality.

  • ( ~ 1 hour, 15 minutes ) 

    Today, architects and designers need to give special consideration to building acoustics when developing plans for new and newly renovated construction projects. Excessive noise in any environment is considered a serious problem that can negatively impact occupant comfort, leading to learning difficulties, sleep deprivation, delayed recovery from illness, and lack of privacy. Sound basics are discussed in this course, and STC, IIC, and sound attenuation (reduction) techniques are explained. Various case studies are examined to develop further understanding of the performance of common sound abatement assemblies that are essential for occupant well-being and comfort.

  • ( ~ 1 hour ) 

    The acoustical comfort level in the workplace is a key measure of the quality of the indoor environment for building occupants. This course explores key concepts and characteristics of sound, as well as speech intelligibility and privacy and their associated acoustical remedies. Also presented is the use of sound absorbers and diffusers as acoustical solutions to noise problems.

  • ( ~ 1 hour ) 

    Originally developed to reduce solar heat gain from entering through a pane of glass, window films in today’s market provide UV protection, reduce glare, reduce fading, increase occupant comfort, offer safety and security, and yield energy savings. This course evaluates the performance of different types of solar control window films and offers daylighting strategies for commercial, retail, and residential building and architectural applications.

  • ( ~ 15 minutes ) 

    The first course of this series from the Carbon Leadership Forum provides a high-level overview of embodied carbon: how it is defined, its significance in the global climate crisis, and how it is impacted by the construction industry. In addition, the course examines procurement policies as an embodied carbon reduction strategy—in particular, the Buy Clean policies, their uptake in the US, and their key elements.

  • ( ~ 1 hour ) 

    The demand for mass timber construction has increased significantly in recent years due to its numerous benefits, including sustainability, strength, faster construction times, cost savings, and a natural wood aesthetic. However, a major drawback of mass timber construction is its poor acoustical performance. This course examines the various mass timber construction types and provides acoustical solutions to meet and surpass building codes.

  • ( ~ 1 hour ) 

    Interior design and fashion design have a natural connection and similarities in process and production. Both have faced new challenges in achieving sustainable results in their projects. This course explores the contrasting philosophies of fast and slow production and shows how to evaluate the true environmental cost of a product. A case study is presented, demonstrating how an artist/designer can collaborate with a product manufacturer to address sustainability through the creation of innovative bamboo-based designs that may help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    This program introduces building retrofits as a method to achieve green building standards by adapting existing structures. While a building retrofit may have several types of interventions, effective air sealing improves the durability of the structure and occupant comfort, health, and safety. This course includes a detailed look at sources of air leakage and the various methods available to address this infiltration. Several real-world examples demonstrate the importance of identifying the source of air leakage, investigating existing conditions, and proper detailing.

  • ( ~ 1 hour, 15 minutes ) 

    Growing US cities face escalating housing costs, residential and commercial displacement, homelessness, and the suburbanization of poverty. As increasing numbers of households are pushed out of the city by rising housing costs, they are burdened with long commutes and increased transportation costs while their carbon emissions escalate. These challenges are exacerbated by a deeply embedded policy—single-family zoning—that accounts for 75% or more of the land area allotted for housing in many fast-growing US cities. Part 2 of this two-part series outlines policies implemented at the city and state levels to make existing single-family neighborhoods more inclusive, equitable, walkable, and sustainable. It illustrates innovative case studies at the building scale to increase access to these neighborhoods for both renters and homeowners. In addition, it reviews efforts by architects and AIA chapters to address this issue despite the controversy that surrounds it. Each part of Right to the City can be taken as an individual course. Want free access to this and other NCARB courses? The NCARB Continuum Education Program offers free HSW CE courses to licensure candidates and architects who hold a current NCARB Certificate, which can be accessed through their NCARB record. Renew your NCARB Certificate , or get NCARB Certified .

     In order to download this course, a USD $25.00 fee must be paid.

  • ( ~ 15 minutes ) 

    Policies targeting the reduction of carbon emissions associated with building products require the disclosure of embodied carbon data to inform those policies and verify whether reduction targets or incentive requirements have been met. This course aims to provide a guide to collecting high-quality embodied carbon data.

  • ( ~ 1 hour, 15 minutes ) 

    Metal roof and wall systems have long been specified for commercial, residential, and industrial buildings because they have a lengthy history of durability, reliability, and resilience. This course examines the attributes of metal panel systems and the design options that make metal-clad buildings sustainable, attractive, and suitable for a variety of applications and environmental conditions.

  • ( ~ 1 hour ) 

    Incorporating nature into the built environment through biophilic design increases occupant well-being, productivity, and health and is an integral component of an ecologically healthy and sustainable community. Presented here is an overview of biophilic design, its relationship to sustainability, and its positive human, environmental, and economic outcomes. Case studies demonstrate how rooftop deck systems can contribute to biophilic and sustainable design objectives.

  • ( ~ 1 hour ) 

    A number of third-party entities have certified the sustainable attributes of solid surfaces. This course explores those green product certifications in relation to the characteristics of 100% acrylic solid surfaces. It includes an overview of current manufacturing, fabrication, and thermoforming processes, the aesthetics, and the many possible applications and design opportunities for solid surfaces.

  • ( ~ 1 hour ) 

    This course examines bamboo as a sustainable construction material by focusing on its properties, environmental advantages, and innovative applications. Participants will explore responsible sourcing, manufacturing practices, and key certifications. The course also covers advanced products such as thermally modified and high-density bamboo. Professionals will gain the knowledge required to integrate bamboo into projects that align with performance and sustainability standards.

  • ( ~ 1 hour, 15 minutes ) 

    This course explores a 5,000-square-foot office expansion recently completed by Excel Dryer. The building owner was committed to reducing their environmental impact and building a beautiful, healthy, sustainable, and functional space. This course discusses the relevant tools for sustainable, healthy buildings, including the WELL Building Standard™ version 2 and the LEED® v4.1 Building Design and Construction rating system. The methods for achieving these goals are examined through various building products and systems: walls, furniture, HVAC, sound masking and acoustic systems, flooring, daylighting and solar shading, and plumbing.

  • ( ~ 1 hour ) 

    Sound control is a critical element in a building’s design. We all think of the walls, ceiling, and floor when discussing sound attenuation, but without the proper acoustic door, the sound-control goals in an acoustic plan may not be met. This course reviews healthy sound levels and how to test and identify target STC ratings. Also discussed are the elements of acoustic door assemblies and how they address fire ratings and ADA compliance, contribute to LEED® certification and green building, and provide security for classified files and electronic data.

  • ( ~ 1 hour ) 

    Energy creation, distribution, and consumption are all in a period of transition. Understanding this transition and its various aspects is critical to sustainable transitional energy planning (STEP). This course delves into the reasoning behind the STEP approach and its contributions to creating resilient communities and explores available exhaustible and renewable energy resources and innovations in the energy sector that can be leveraged by STEP.

  • ( ~ 1 hour ) 

    Although known for being a strong and versatile building material, there are a number of factors that affect the sustainability of concrete, and a variety of measures that can be taken to increase its durability and extend its service life, thus protecting the health, safety, and welfare of the users. This course discusses the environmental impact of concrete and some of the main causes of concrete deterioration, and examines how crystalline waterproofing technology can be employed to increase the durability and sustainability of concrete.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

Displaying 126 - 150 of 397 results.

FIRST PREV [76-100] [101-125] [126-150] [151-175] [176-200] NEXT LAST