Sustainable Design Courses

Click here for information on the AEC Daily Sustainability Rating System.

Displaying 126 - 150 of 402 results.

FIRST PREV [76-100] [101-125] [126-150] [151-175] [176-200] NEXT LAST

  • ( ~ 1 hour ) 

    Lighting is one of the most influential elements of the indoor environment, with far-reaching effects on the human body, mind, and spirit. For architects, designing spaces prioritizing natural light is critical to fostering comfort, productivity, and well-being. This course explores the health and wellness benefits of tubular daylighting systems and their role in creating healthier, more sustainable indoor environments. Also noted are applicable credits in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and features in the WELL Building Standard™ version 2. The course concludes with a review of several case studies.

  • ( ~ 1 hour ) 

    Roofing is one of the most common renovation projects on commercial buildings. Upgrading a roof assembly to meet current building standards provides an opportunity to save energy and maintain the necessary fire and structural performance. This course reviews the code requirements for commercial reroofing and discusses how reroofing can improve a building’s energy efficiency.

  • ( ~ 1 hour ) 

    The fireplace has always been a focal point in any home, providing warmth and a place for friends and family to gather. Today’s wood-burning fireplaces, inserts, and stoves have become increasingly efficient and clean burning. This course examines using wood as a fuel source and discusses the many characteristics that can affect heat production, efficiency, and burn time. New burning technologies that meet EPA certification requirements for released particulate matter are summarized, as are design and installation specifications.

  • ( ~ 1 hour ) 

    Cleanliness and sanitation are important aspects of buildings and businesses, especially in restrooms. Users want environments where they don’t have to worry about picking up germs while owners desire solutions that are safe, attractive, and cost effective. Smart, connected fixtures can leverage sensor technology to optimize user experiences while also streamlining the management of building facilities, conserving water, and providing a hygienic, touchless experience for users. 

  • ( ~ 1 hour, 30 minutes ) 

    Light-manipulating materials use internal channels to capture, bend, scatter, and redirect light and create visually stunning spaces. Panels and slabs in resin, glass, and terrazzo make an experiential surface for privacy screens or signage, primary or accent lighting, and countertops or flooring—anywhere the interplay of light and shadow is desired for beauty and inspiration. This course describes the different types of light-manipulating materials and substrates, design and installation options, and the contributions of these products to sustainability goals as well as occupant health, well-being, and engagement in a wide range of dynamic, unique applications.

  • ( ~ 1 hour ) 

    Thermoplastic single-ply roofing systems have over a half century of proven performance. This course outlines their history and the various types of membranes that have been developed and identifies the individual attributes and benefits of each type. This highly illustrated course also discusses the cooling benefits of white and green roofs, the numerous single-ply attachment and warranty options, and descriptions of sample installations.

  • ( ~ 1 hour, 15 minutes ) 

    Stone has long been valued for its durability, reliability, and beauty. Today, natural thin stone veneer offers these benefits with reduced weight, cost, and environmental impact. This course explores its applications in commercial and residential settings, covering aesthetics, performance, and key specification standards. It also examines the sustainability profile of thin stone veneer compared to full natural and manufactured stone, highlighting an industry-wide LCA, responsible quarrying and processing, and how collaboration with fabricators can reduce environmental impact while preserving quality and design integrity.

  • ( ~ 1 hour ) 

    Recycled rubber flooring is an environmentally responsible material that outlasts many types of traditional commercial flooring products when exposed to normal foot traffic stress. Interior and exterior recycled rubber surfacing products are explored in terms of their sustainable design benefits and applications. The program includes discussions on rubber manufacturing, postconsumer tires, and green building certification systems.

  • ( ~ 1 hour, 15 minutes ) 

    Vacuum insulation panels (VIPs) offer higher thermal resistance per unit thickness than traditional insulation materials. This means a building envelope can meet the effective R-values for enclosures required by the energy codes without having to increase the thickness of the walls, roof, or floors. This course discusses how VIPs work, why they are effective, and the impact the properties of the materials used to construct a VIP can have on its performance. VIP installations and the latest developments in VIP technology are reviewed to illustrate the advantages of using VIPs as thermal insulation in the design of energy-efficient buildings.

  • ( ~ 1 hour, 15 minutes ) 

    Undesirable acoustics in educational spaces have long been considered averse to our goals to effectively teach, create, collaborate, listen, and learn. Now, in the wake of implementing pandemic protocols, our acoustic comfort in these spaces is greatly challenged. This course examines the impacts of poor soundscapes in educational facilities and introduces innovative solutions for improving acoustics in these areas while keeping us comfortable and safe from exposure to emerging viruses.

  • ( ~ 1 hour ) 

    Architectural metal panels (AMPs) provide exceptional design versatility, enhancing both the aesthetics and functionality of a building. This course explores different types of panels, their applications, finishes, key design and specification considerations, and best practices to ensure the durability and performance of the panel system. Additionally, several project examples are presented to showcase the creative applications of AMP systems.

  • ( ~ 1 hour ) 

    Lighting controls allow homeowners to adjust lamps and light fixtures from anywhere in the home without special wiring or expensive master controllers. Lighting controls can be integrated into a home for single-room, multiroom, whole-house, or automated systems. This course discusses the role of lighting in design and occupant comfort and then outlines how lighting controls can benefit occupant behavior, health, and productivity and the appeal and performance of the home, especially regarding energy efficiency.

  • ( ~ 1 hour ) 

    Although known for being a strong and versatile building material, there are a number of factors that affect the sustainability of concrete, and a variety of measures that can be taken to increase its durability and extend its service life, thus protecting the health, safety, and welfare of the users. This course discusses the environmental impact of concrete and some of the main causes of concrete deterioration, and examines how crystalline waterproofing technology can be employed to increase the durability and sustainability of concrete.

  • ( ~ 1 hour ) 

    Green building rating system crosswalks are tools that identify where systems are equivalent or aligned, providing a streamlined approach that can help projects achieve dual certifications. This course provides an overview of the crosswalks related to automated window shades and daylight control in LEED® v4.1 Building Design and Construction (BD+C): New Construction and Core and Shell, LEED v4.1 Interior Design and Construction (ID+C): Commercial Interiors, and the WELL Building Standard™ version 2. Also discussed are trade-offs between project parameters and rating system requirements that designers and architects must consider. 

  • ( ~ 1 hour ) 

    Net zero energy ready buildings are a popular topic in today's world of climate change. This course explores how energy efficiency has expanded toward exterior wall assemblies, where thermal bridging and thermally broken subframing systems are becoming the new norm.

  • ( ~ 1 hour ) 

    Sound control is a critical element in a building’s design. We all think of the walls, ceiling, and floor when discussing sound attenuation, but without the proper acoustic door, the sound-control goals in an acoustic plan may not be met. This course reviews healthy sound levels and how to test and identify target STC ratings. Also discussed are the elements of acoustic door assemblies and how they address fire ratings and ADA compliance, contribute to LEED® certification and green building, and provide security for classified files and electronic data.

  • ( ~ 1 hour ) 

    Modern hydronic radiator systems are an energy-efficient, healthy, and hygienic solution for residential and commercial applications. This course discusses the principles of radiant heating and panel radiators, and how to size panel radiators for residential applications.

  • ( ~ 1 hour, 15 minutes ) 

    This course provides an in-depth overview of recycling and waste diversion programs, focusing on effective planning, stakeholder engagement, and strategic bin placement. It offers practical guidance on selecting bins, designing consistent signage, and using communication strategies to improve user compliance. The course also explores additional methods to reduce waste at the source and covers techniques for continuous monitoring and adaptation to achieve long-term sustainability goals.

  • ( ~ 1 hour ) 

    Fenestration openings are a critical component of a building envelope, especially in present-day sustainable, energy-efficient buildings. Building envelopes play an important role in controlling the movement of heat, bulk water, and water vapor. Designing fenestration openings for buildings that use continuous exterior insulation has a significant role in reducing thermal bridging and thus conserving energy. This course reviews the impact of exterior insulation on fenestration installation design. The course also explores solutions for a wide variety of wall system variations.

  • ( ~ 1 hour ) 

    The growing global population is creating an increased demand for resources. As a result, there is a need to replace fossil-based, nonrenewable building materials with more bio-based materials, such as bamboo. This course describes the properties of bamboo that make it a more sustainable choice, including its fast growth and CO2 saving and storing potential. It also discusses how active bamboo reforestation and the use of durable bamboo products can lead to CO2 reduction across many industries.

  • ( ~ 1 hour ) 

    New technology and improvements in masonry veneer installation can help your team save time and money in the construction process while providing superior results. In this course, you'll learn how cutting-edge technology is helping masons move beyond traditional lath and scratch and be introduced to the principles behind enhanced masonry veneer installation systems (EMVIS). Learn how to create permanent, high-strength installations for residential, commercial, and industrial applications using EMVIS with fortified mortars and innovative waterproofing barrier membranes that protect against air and water penetration.

  • ( ~ 1 hour, 30 minutes ) 

    Permeable interlocking concrete pavement (PICP) has the ability to create solid, strong surfaces for pedestrians and a range of vehicular uses; it can help maintain a site’s existing natural hydrologic function and reduce the overall impact of development. This course discusses the components of a PICP system and how they work together to manage stormwater in a variety of applications. Also addressed are hydrological and structural factors to consider when designing with PICP and how PICP contributes to sustainable building goals and projects.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20—70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour ) 

    Quartz surfacing is a man-made material consisting of up to 93% natural quartz crystal. In this course, you will discover the other components behind the beauty, durability, and flexibility of this surfacing material. You will see the composition, production, and quality assurance processes that go into making the material and the resultant attributes and capabilities, as well as the installation basics of quartz surfacing materials.

  • ( ~ 1 hour ) 

    In the fight against climate change, efforts intensify against the planet’s number one enemy—carbon dioxide. The building industry will play a significant role in these efforts. Embodied carbon—the global greenhouse gas emissions generated from sourcing raw material and processing, manufacturing, transporting, and installing building materials—will be the target over the next decade. This course will define embodied carbon, its impact on greenhouse gas emissions, the construction industry's impact, and the methods and tools that building designers can employ to limit embodied carbon.

Displaying 126 - 150 of 402 results.

FIRST PREV [76-100] [101-125] [126-150] [151-175] [176-200] NEXT LAST