Category: HEATING, VENTILATING AND AIR CONDITIONING

Displaying 1 - 25 of 51 results.

FIRST [1-25] [26-50] [51-51] NEXT LAST SHOW ALL

  • ( ~ 1 hour, 15 minutes ) 

    As natural gas lines are being phased out for new development and for those who want to move away from burning fossil fuels, it’s becoming critical for homeowners, builders, specifiers, and architects to understand the flexible application of electric heating solutions. Electric heat is a convenient way to reduce energy costs and provide reliable heating options for commercial and residential heating systems that increase occupant safety, comfort, and well-being. This course examines multiple electric heating options to meet consumer needs and provides solutions to common heating concerns.

  • ( ~ 1 hour, 15 minutes ) 

    This course explores a 5,000-square-foot office expansion recently completed by Excel Dryer. The building owner was committed to reducing their environmental impact and building a beautiful, healthy, sustainable, and functional space. This course discusses the relevant tools for sustainable, healthy buildings, including the WELL Building Standard™ version 2 and the LEED® v4.1 Building Design and Construction rating system. The methods for achieving these goals are examined through various building products and systems: walls, furniture, HVAC, sound masking and acoustic systems, flooring, daylighting and solar shading, and plumbing.

  • ( ~ 1 hour ) 

    Modern hydronic radiator systems are an energy-efficient, healthy, and hygienic solution for residential and commercial applications. This course discusses the principles of radiant heating and panel radiators, and how to size panel radiators for residential applications.

  • ( ~ 1 hour ) 

    With buildings accounting for nearly 40% of global carbon emissions, the push for greener construction has never been more critical. Sustainable building initiatives are taking center stage as the world strives to reduce emissions. The industry is moving toward adaptive and net-zero buildings, emphasizing energy efficiency and environmental awareness across sectors. Broaden your expertise in energy-efficient and adaptive building design by exploring the role of high-volume, low-speed (HVLS) fans in enhancing thermal comfort. This course shows why and how to specify HVLS fans as part of initial airflow designs to support sustainable building goals. Learners will discover how to optimize multiuse spaces for greater comfort through effective air distribution, temperature control strategies, and energy savings. By the end of the course, learners will have a solid understanding of HVAC efficiency challenges and solutions that align with LEED® v5 Building Design and Construction (BD+C), LEED v5 Interior Design and Construction (ID+C), WELL Building Standard™ version 2, ASHRAE, and OSHA standards. This course equips architects and engineers with practical strategies for integrating sustainable, cost-effective airflow solutions into their designs.

  • ( ~ 1 hour ) 

    As we become more aware of the levels of toxins in our environment, we are realizing that the quality of air inside our homes is just as important as the quality of air outside our homes. This course outlines why indoor air quality is so important to our health and describes how to improve indoor air quality by using a balanced ventilation system.

  • ( ~ 1 hour, 15 minutes ) 

    Air control dampers are an essential component of a building’s HVAC system, regulating heating, cooling, and ventilation performance. Presented here is an introduction to control, balancing, backdraft, industrial, and multizone dampers; each type plays an important role in the HVAC system. Discussed are damper types, components, and performance metrics. Guidance is provided for damper specification, installation, maintenance, and inspection.

  • ( ~ 1 hour ) 

    Firestopping is the process of sealing openings around penetrants or in joints or gaps between fire-rated assemblies to restore hourly fire resistance ratings. It is a critical part of fire containment and a balanced fire and life safety plan. This course outlines resources and code requirements that architects and designers should be aware of while preparing specifications for firestop systems in their projects. The course also reviews common mistakes to avoid.

  • ( ~ 1 hour ) 

    A large portion of new commercial and residential buildings built today are equipped with clear, floor-to-ceiling glass. Does this new expansive area of glass lead to daylight optimization? This course explains the impacts of daylighting on human health and building occupant comfort. Proactive and reactive automated shading systems are discussed, and the course explains how a properly designed shading system can reduce whole-building energy consumption. Automated shading systems in projects of various scopes and scales are also discussed.

  • ( ~ 1 hour ) 

    Unwanted sound can become more than a mere annoyance. Excess noise has been found to increase stress and distraction, reduce learning and productivity, and even lead to hypertension and permanent hearing loss. This course presents an overview of how sound is described and measured and describes the many industrial and architectural products available to control noise in virtually any environment.

  • ( ~ 1 hour ) 

    Traditional and modern, linear direct vent gas fireplaces safely provide supplemental heat while preserving indoor air quality. The course explores gas fireplace venting systems and heater- and decorative-rated fireplace options, electric fireplace options, functions, aesthetics, and applications. Also discussed are innovative technologies that enhance performance, applicable codes and standards, safety requirements and precautions, and size considerations.

  • ( ~ 1 hour ) 

    The fireplace has always been a focal point in any home, providing warmth and a place for friends and family to gather. Today’s wood-burning fireplaces, inserts, and stoves have become increasingly efficient and clean burning. This course examines using wood as a fuel source and discusses the many characteristics that can affect heat production, efficiency, and burn time. New burning technologies that meet EPA certification requirements for released particulate matter are summarized, as are design and installation specifications.

  • ( ~ 1 hour ) 

    Ventilation grilles influence HVAC system performance but can pose aesthetic challenges for designers. Custom grilles made with modern fabrication techniques employ a variety of materials and finishes to create solutions that enhance and fully integrate with architectural interiors. This course discusses the basic mechanics of effective air distribution in buildings, performance characteristics of grilles, grille types, and custom design options.

  • ( ~ 1 hour ) 

    Hidden access covers blend utility access covers with the surface continuity of streetscape, hardscape, and landscape designs. This course reviews the functions, product types, and specification and installation considerations of hidden access cover solutions.

  • ( ~ 1 hour ) 

    Energy creation, distribution, and consumption are all in a period of transition. Understanding this transition and its various aspects is critical to sustainable transitional energy planning (STEP). This course delves into the reasoning behind the STEP approach and its contributions to creating resilient communities and explores available exhaustible and renewable energy resources and innovations in the energy sector that can be leveraged by STEP.

  • ( ~ 1 hour ) 

    Energy conservation and occupant well-being, comfort, and productivity are issues of increasing concern in building design. This course illustrates how radiant heating and cooling systems address these issues positively and efficiently. It encompasses the various types of systems available and how they can contribute to credit requirements in the LEED® v4.1 Building Design and Construction rating system and the WELL Building Standard™ version 2. System workings, design, aesthetic considerations, advantages, testing and measuring protocols, and installation procedures are reviewed, and the course concludes with several installation examples.

  • ( ~ 1 hour ) 

    The reasons for and benefits of adopting STEP have become increasingly clear as both national and international communities continue in their efforts to transition from dirty fuel sources to renewable ones. This course reviews the various systems and strategies that enable STEP, such as smart grids and microgrids, and explores strategies that STEP enables, such as integrated design processes, efficient water management, and energy innovation.

  • ( ~ 1 hour, 15 minutes ) 

    The use of life safety dampers is driven by requirements in various building codes. There are many different applications for which fire, fire/smoke, smoke, and/or ceiling radiation dampers can be used, each having its own specific purpose and unique installation requirements. This course gives an in-depth look at the different types of dampers and explains how and where they're each used and installed.

  • ( ~ 1 hour ) 

    This course examines the role of access doors and panels in building design. It covers their functions, material options, and performance requirements. Topics include resistance to fire, sound, and moisture, as well as durability, code compliance, and integration with surrounding finishes. The course also presents best practices for specifying and installing access components that support safety, accessibility, and design continuity across a range of project types.

  • ( ~ 1 hour ) 

    Energy creation, distribution, and consumption are all in a period of transition. Understanding this transition and its benefits is critical to sustainable transitional energy planning (STEP). This course reviews the nature of the transition, the forces driving it, emerging energy systems and sources, and international and national examples. It details the process required for STEP and provides a comprehensive overview of the many renewable energy options now viable for community energy systems. It concludes with a series of illustrated sample plans and projects.

  • ( ~ 1 hour ) 

    Exterior shading devices offer a number of advantages that contribute to a more sustainable building, including minimizing cooling costs, reducing peak electricity demand, and controlling glare. These benefits result in greater occupant comfort and improved productivity. This course provides a review of exterior aluminum shading device systems, including the components, finishes, and design and engineering considerations, as well as a discussion of how shading strategies contribute to LEED® certification.

  • ( ~ 1 hour ) 

    An energy recovery ventilator (ERV) system provides occupants with filtered, balanced, and tempered air within their living space. Airborne contaminants can be greatly reduced with ERV systems. This course provides knowledge about the need, use, design, and installation of ERVs in the modern dwelling unit and when retrofitting existing structures. The course also addresses the environmental advantages of sustainable and healthy solutions for indoor air quality.

  • ( ~ 1 hour ) 

    With the increasing prominence of glass in new buildings and retrofits, the use of window film can raise the style, performance, and safety of today’s building projects. This course examines the use of various types of window film (decorative, solar control, and safety/security) and their role in improving occupant comfort and safety, lowering energy costs, and enhancing privacy.

  • ( ~ 1 hour, 30 minutes ) 

    Air curtain units (ACUs) provide a controlled airstream across a door or opening, creating a seamless barrier between two distinct spaces while enabling smooth, uninterrupted traffic flow. Air curtains fulfill numerous purposes and provide building owners with significant energy savings. This course examines how air curtains work and how they reduce whole-building energy consumption and contribute to occupant wellness and safety. The role of air curtains in limiting the infiltration of insects, pathogens, and outside pollutants while maintaining thermal comfort and good indoor air quality is explained. ACU selection and installation considerations are also discussed.

  • ( ~ 1 hour ) 

    Originally developed to reduce solar heat gain from entering through a pane of glass, window films in today’s market provide UV protection, reduce glare, reduce fading, increase occupant comfort, offer safety and security, and yield energy savings. This course evaluates the performance of different types of solar control window films and offers daylighting strategies for commercial, retail, and residential building and architectural applications.

  • ( ~ 1 hour, 15 minutes ) 

    An air curtain, also known as an air door, employs a controlled stream of air aimed across an opening to create an air seal. This seal separates different environments while allowing a smooth, unhindered flow of traffic and unobstructed vision through the opening. This course discusses how air curtains work and why they can contribute to occupant comfort, energy efficiency, and indoor air quality when the door is open. It also reviews how air curtains improve whole-building energy efficiency versus conventional methods.

Displaying 1 - 25 of 51 results.

FIRST [1-25] [26-50] [51-51] NEXT LAST SHOW ALL