The Nova Scotia Association of Architects

The Nova Scotia Association of Architects (NSAA) is a self-governing professional association established in 1932, and mandated by the Province of Nova Scotia under The Architects Act to regulate the practice of architecture in the province.

Click to Learn More About the Nova Scotia Association of Architects

Visit www.nsaa.ns.ca and Join Now!

Displaying 1 - 25 of 46 results.

FIRST [1-25] [26-46] NEXT LAST SHOW ALL

  • ( ~ 1 hour ) 

    In light of recent global events, the threat of domestic terrorism has heightened the need for protective design in public spaces. This course explores strategies for vehicle-ramming mitigation and the role of perimeter protection devices in safeguarding people and property. It examines key US and international standards, risk-assessment tools, design strategies, and case studies that demonstrate how protective solutions can be seamlessly incorporated into urban landscapes. Learners will discover how thoughtful design can integrate counterterrorism measures into the built environment without compromising public safety, functionality, and visual appeal.

  • ( ~ 1 hour ) 

    Thermal modification is a tried and tested process for increasing the durability of wood while maintaining a warm aesthetic in building design. This course examines all aspects of this sustainable wood product and how it can be incorporated into a variety of projects.

  • ( ~ 1 hour, 15 minutes ) 

    Integrated fire and smoke door systems meet all life safety and compartmentalization requirements without sacrificing an architect’s vision. This course explains how multiple codes and standards apply to an opening, elevator lobby, and elevator shaft and discusses how integrated door systems provide building owners with a complete turnkey door system that uses components engineered to work as a unified whole. 

  • ( ~ 1 hour, 30 minutes ) 

    An ideal railing system enhances the appeal and value of a property and contributes to design as well as safety, while not requiring large amounts of time or money to maintain. This course presents an overview of railing system material options with a focus on aluminum and thermoplastic. The performance, design, and sustainability benefits of each material are discussed, along with mounting and aesthetic options. The course concludes with tips on selecting the right railing system for the project and case studies showcasing aluminum and thermoplastic railing system installations.

  • ( ~ 1 hour ) 

    Perforated Metal, Expanded Metal, and Wire Mesh combine aesthetics, durability, and functionality. Although each product is distinct with unique characteristics, they have similar properties that provide light and sound diffusion, security, strength, and durability. This course provides a review of the characteristics and architectural applications of these products, the different materials in them, and how they achieve a safe work environment.

  • ( ~ 1 hour ) 

    Provides an overview of the noise issues associated with floor/ceiling assemblies of multifamily dwellings, as well as the factors that affect acoustical performance. Also presented is a review of the acoustical solutions that are available with a focus on sound mats with poured underlayment (SMPU) systems.

  • ( ~ 1 hour ) 

    In applications where wood may be exposed to moisture, insects, or fungal organisms, preservative-treated wood can ensure a project’s durability. This course reviews: the manufacturing process for pressure-treated wood; types of preservative treatments and the required levels of retention as dictated by the end-use application, desired service life, and exposure conditions; American Wood Protection Association (AWPA) Use Category standards; current issues concerning preserved wood in residential and commercial construction; and Best Management Practices (BMPs) for aquatic uses.

  • ( ~ 1 hour ) 

    As some of the earliest building materials, masonry and concrete have been used for their durability and strength. However, masonry architecture, both historical and contemporary, has been left vulnerable to water—the single most damaging element to masonry in our environment. This course identifies common water-related problems for masonry and concrete, describes protective treatments that increase masonry durability, and explains the process for safely selecting and applying a protective treatment.

  • ( ~ 1 hour ) 

    The savings that water conservation measures can provide are real and practical and offer enormous untapped potential. One of the best ways to boost conservation really hasn’t been thoroughly utilized, yet it’s right here at our fingertips: faucets. This course provides an overview of commercial faucets, including the evolution of the modern faucet, design and installation considerations, and the faucet’s impact on water conservation and green building programs.

  • ( ~ 1 hour ) 

    Moisture and soil gas beneath concrete slabs can cause a myriad of problems in both residential and commercial applications. The causes and consequences of these problems are reviewed in this course, along with a discussion on the types and characteristics of under-slab water vapor and soil gas barriers.

  • ( ~ 1 hour ) 

    The selection of windows and doors for a particular project must satisfy its aesthetic and functional requirements. However, we also want windows and doors to be safe, durable, leak-free, and energy efficient and meet the needs of those with disabilities. The International Building Code® and related standards ensure that windows and doors support public health, safety, well-being, and energy efficiency. This course provides an overview of the codes and standards for doors and windows, including weather resistance, durability, egress, safety, and accessibility requirements.

  • ( ~ 1 hour ) 

    Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.

  • ( ~ 30 minutes ) 

    As synthetic turf systems evolve as functional and aesthetic landscape solutions, conversations about sustainability, particularly environmental impacts, are essential. This course addresses the sustainability of synthetic turf from the triple-bottom-line perspective: profit, people, and planet. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.

  • ( ~ 1 hour ) 

    In designing successful interior building spaces that positively impact their occupants, it is critical to have knowledge of the principles of acoustics and noise control and link them to design methodology. This course explores these principles, with a special emphasis on common building types where acoustics and noise control are often required and noise can have detrimental effects on users, such as athletic facilities and performance spaces.

  • ( ~ 1 hour, 15 minutes ) 

    Commercial planters add interest to both commercial and residential spaces. An understanding of materials and options available when specifying planters is an essential tool for both designers and architects. These topics are addressed in this course along with discussions on the applications of commercial planters and the benefits they offer in the design of indoor and outdoor spaces.

  • ( ~ 1 hour ) 

    This course examines threats to window and door integrity in buildings, including forced entry, ballistic impact, storm debris, and blast pressure. It covers retrofit and replacement approaches that strengthen glazing systems, explains relevant testing protocols, and addresses misleading performance claims. The course concludes with guidance on how to assess existing conditions and specify solutions that support occupant safety, risk mitigation, and building resilience.

  • ( ~ 1 hour ) 

    The operation of mechanical equipment generates vibration and noise, which, if left untreated, can damage the building structure and the equipment itself and be a source of discomfort for building occupants. This course examines HVAC equipment vibration and the specification of isolation solutions. It provides discussions on each of the ASHRAE isolator and base types and describes some acoustical floor treatments.

  • ( ~ 1 hour, 15 minutes ) 

    An air curtain, also known as an air door, employs a controlled stream of air aimed across an opening to create an air seal. This seal separates different environments while allowing a smooth, unhindered flow of traffic and unobstructed vision through the opening. This course discusses how air curtains work and why they can contribute to occupant comfort, energy efficiency, and indoor air quality when the door is open. It also reviews how air curtains improve whole-building energy efficiency versus conventional methods.

  • ( ~ 1 hour ) 

    When designing noise control measures for a building, it is critical to look beyond the sound transmission class (STC) and impact insulation class (IIC) ratings in order to create an ideal environment that promotes occupant well-being, protects their hearing, and fulfills the project’s needs. This course provides an overview of noise control principles, construction composites, and design methodologies that reduce noise, with an emphasis on performance-oriented designs requiring third-party acoustical consultants.

  • ( ~ 1 hour, 15 minutes ) 

    Due to their durability, low operational cost, and sustainability, metal roofs are gaining popularity in both commercial and residential markets. Owner expectations for this product family have increased as well and now include heightened aesthetics and long-term performance. While metal roofing systems are certainly up to these challenges, when they fail, the results are costly. Consequently, it is imperative designers have full knowledge of metal roof design and detailing. This course covers the top ten problems metal roof designers face and describes how these problems can be prevented through proper design.

  • ( ~ 1 hour, 15 minutes ) 

    Typically, all the brick selected for a given project will be either full bed depth (anchored) or thin brick (adhered); however, situations may benefit from combining the two types of masonry veneer on a project. The intent of this course is to differentiate between the types of brick masonry veneer, discuss the unique detailing required when combining veneer types, and provide project examples demonstrating where both types of masonry veneer have been successfully integrated. This course will focus on exterior applications of anchored and adhered masonry veneer.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour ) 

    It’s imperative to have a dependable, well-designed fire protection system that helps save lives and property. This course is designed to advance awareness and understanding about the wide range of components, functionality, and benefits of today’s most innovative standpipe fire systems and how to select the optimal system for your design based on building type, codes, and other requirements.

  • ( ~ 1 hour ) 

    Masonry wall types have evolved from self-supporting mass walls to cavity walls and veneers that require wall ties or anchors. Over time, anchors can fail and masonry wall systems can become unstable and require repair. This course discusses how to recognize unstable façades, how retrofit anchors can be used to repair these instabilities, the different types of anchors available, and how to determine the proper repair procedure.

Displaying 1 - 25 of 46 results.

FIRST [1-25] [26-46] NEXT LAST SHOW ALL