The Nova Scotia Association of Architects

The Nova Scotia Association of Architects (NSAA) is a self-governing professional association established in 1932, and mandated by the Province of Nova Scotia under The Architects Act to regulate the practice of architecture in the province.

Click to Learn More About the Nova Scotia Association of Architects

Visit www.nsaa.ns.ca and Join Now!

Displaying 1 - 25 of 51 results.

FIRST [1-25] [26-50] [51-51] NEXT LAST SHOW ALL

  • ( ~ 1 hour ) 

    Structural HDPE plastic lumber offers strength, durability, and design versatility and is a sustainable alternative to traditional building materials. This course examines the types of structural HDPE plastic lumber and their manufacturing processes and provides technical information on performance attributes, suitable applications, installation considerations, and design guidelines. Comparisons are made to wood and wood-plastic composite lumber. Also presented is how recycled HDPE plastic lumber may help meet credit requirements in the Sustainable SITES Initiative® (SITES® v2) and LEED® v4.1 Building Design and Construction (BD+C) and Residential BD+C rating systems. Case studies demonstrate the exemplary performance of structural HDPE plastic lumber in aggressive environmental conditions.

  • ( ~ 1 hour ) 

    In the last couple of decades, houses have become progressively more airtight due to energy efficiency and cost concerns. While air infiltration and exfiltration rates have been significantly reduced, the need for an efficient ventilation system has become extremely important. This course evaluates different types of mechanical ventilation systems and discusses why heat recovery ventilation (HRV) and energy recovery ventilation (ERV) systems are characterized by a high level of energy efficiency and as an effective means for improving indoor air quality.

  • ( ~ 1 hour ) 

    Although known for being a strong and versatile building material, there are a number of factors that affect the sustainability of concrete, and a variety of measures that can be taken to increase its durability and extend its service life, thus protecting the health, safety, and welfare of the users. This course discusses the environmental impact of concrete and some of the main causes of concrete deterioration, and examines how crystalline waterproofing technology can be employed to increase the durability and sustainability of concrete.

  • ( ~ 1 hour ) 

    This course introduces acetylated wood as a sustainable building material, exploring its origin, modification process, and environmental benefits. Participants will learn how acetylation enhances wood durability, stability, and resistance to decay—extending its service life and reducing maintenance. The course highlights how acetylated wood supports green building goals through renewable sourcing and nontoxic treatment and may help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems, the WELL Building Standard™ version 2, and the Sustainable SITES Initiative® v2. Real-world case studies demonstrate its use in architectural and preservation projects, offering practical insights into sustainable design applications.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour, 15 minutes ) 

    Typically, all the brick selected for a given project will be either full bed depth (anchored) or thin brick (adhered); however, situations may benefit from combining the two types of masonry veneer on a project. The intent of this course is to differentiate between the types of brick masonry veneer, discuss the unique detailing required when combining veneer types, and provide project examples demonstrating where both types of masonry veneer have been successfully integrated. This course will focus on exterior applications of anchored and adhered masonry veneer.

  • ( ~ 1 hour ) 

    It’s imperative to have a dependable, well-designed fire protection system that helps save lives and property. This course is designed to advance awareness and understanding about the wide range of components, functionality, and benefits of today’s most innovative standpipe fire systems and how to select the optimal system for your design based on building type, codes, and other requirements.

  • ( ~ 1 hour ) 

    The look of wood adds warmth and aesthetic appeal to building designs that other materials, such as masonry, metals, and glass, cannot replicate. However, since natural wood may not be suitable for Class 1–3 commercial projects, innovative composite and synthetic materials have been developed to overcome the limitations of real wood. This course provides a comprehensive examination of eight wood-inspired design technologies that mimic the appearance of natural wood while meeting fire performance standards. The role of wood-plastic composite (WPC) hybrid products in fulfilling the requirements of the LEED® v5 Building Design and Construction (BD+C) rating system is also reviewed.

  • ( ~ 1 hour ) 

    The selection of windows and doors for a particular project must satisfy its aesthetic and functional requirements. However, we also want windows and doors to be safe, durable, leak-free, and energy efficient and meet the needs of those with disabilities. The International Building Code® and related standards ensure that windows and doors support public health, safety, well-being, and energy efficiency. This course provides an overview of the codes and standards for doors and windows, including weather resistance, durability, egress, safety, and accessibility requirements.

  • ( ~ 1 hour ) 

    Provides an overview of the noise issues associated with floor/ceiling assemblies of multifamily dwellings, as well as the factors that affect acoustical performance. Also presented is a review of the acoustical solutions that are available with a focus on sound mats with poured underlayment (SMPU) systems.

  • ( ~ 1 hour ) 

    Homeowners are looking for alternatives to traditional cladding materials that are affordable and long lasting and require little or no upkeep. Advances in technology and manufacturing techniques mean cellular PVC cladding products can meet all these requirements without sacrificing aesthetics. This course reviews the benefits of cellular PVC as a cladding material and discusses how cellular PVC rebutted and rejointed (R&R) prefinished shingles can provide the look and feel of wood shingles with an extended level of durability and low maintenance.

  • ( ~ 1 hour ) 

    Commercial rolling service doors offer high performance solutions for demanding areas. Used both internally and externally, these doors provide excellent thermal insulation, strength, and durability in challenging environments. This course examines the characteristics of rolling service doors, fire doors, grilles, and shutters. Door operation, parts, fire code requirements, and wind load information are also discussed.

  • ( ~ 1 hour ) 

    A large portion of new commercial and residential buildings built today are equipped with clear, floor-to-ceiling glass. Does this new expansive area of glass lead to daylight optimization? This course explains the impacts of daylighting on human health and building occupant comfort. Proactive and reactive automated shading systems are discussed, and the course explains how a properly designed shading system can reduce whole-building energy consumption. Automated shading systems in projects of various scopes and scales are also discussed.

  • ( ~ 1 hour ) 

    Thermal modification is a tried and tested process for increasing the durability of wood while maintaining a warm aesthetic in building design. This course examines all aspects of this sustainable wood product and how it can be incorporated into a variety of projects.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour ) 

    Lightweight, prefinished, and factory-fabricated insulated metal panels (IMPs) offer building owners a durable, cost-efficient, and easy-to-install roofing system that provides an air barrier, vapor barrier, and insulation all in one product. This course discusses the characteristics of IMPs and the installation process and explains why IMPs are ideally suited for pre-engineered and structural steel buildings. The role of IMPs in a building’s hygrothermal control layers and IMP code compliance are reviewed.

  • ( ~ 15 minutes ) 

    Code-mandated requirements for inspections first appeared in the Uniform Building Code in 1927, and their original intent is still recognizable in our current codes: inspections by a building official are required at specific points in the construction process. In this course, we will examine an alternative to the periodic inspection process, the full-time inspector of record (IOR). We’ll review the historical context and qualifications of the IOR, when a project may benefit from an IOR, and the impact of using an IOR on life safety and property damage.

  • ( ~ 1 hour ) 

    Traditionally, hydraulic doors have been used in aviation hangars and agricultural and commercial applications. Recently, they’ve found unique uses, such as in shipping containers and residential installations. This course reviews the types of hydraulic doors available and how they promote user well-being, safety, and ADA compliance. Also reviewed are installation methods, cladding options, and applicable standards and performance characteristics.

  • ( ~ 1 hour, 15 minutes ) 

    Commercial planters add interest to both commercial and residential spaces. An understanding of materials and options available when specifying planters is an essential tool for both designers and architects. These topics are addressed in this course along with discussions on the applications of commercial planters and the benefits they offer in the design of indoor and outdoor spaces.

  • ( ~ 1 hour, 15 minutes ) 

    Over time, urban parks and other open landscaped areas are being lost to development. One solution to mitigate this issue is to reconsider undeveloped areas such as building roofs to create green amenity spaces. Amenity decks can provide some alleviation of lost green space, while affording developers the potential to monetize underutilized spaces in their buildings and provide an advantage over older buildings to attract tenants.

  • ( ~ 1 hour, 30 minutes ) 

    An ideal railing system enhances the appeal and value of a property and contributes to design as well as safety, while not requiring large amounts of time or money to maintain. This course presents an overview of railing system material options with a focus on aluminum and thermoplastic. The performance, design, and sustainability benefits of each material are discussed, along with mounting and aesthetic options. The course concludes with tips on selecting the right railing system for the project and case studies showcasing aluminum and thermoplastic railing system installations.

  • ( ~ 1 hour ) 

    This course examines the evolving expectations for hygiene, sustainability, and cost efficiency in commercial restroom design. Drawing on insights from a global postpandemic survey, it explores how shifting perceptions are influencing design priorities and industry standards. Learners will gain a deeper understanding of strategies and products that promote safety, occupant health, and wellness while achieving measurable environmental, cost, and time savings, and how integrating innovative solutions may help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2. Lastly, real-world project examples illustrate how these considerations can be effectively integrated to enhance performance, sustainability achievements, and user experience in modern commercial restrooms.

  • ( ~ 1 hour ) 

    Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.

  • ( ~ 1 hour ) 

    In designing successful interior building spaces that positively impact their occupants, it is critical to have knowledge of the principles of acoustics and noise control and link them to design methodology. This course explores these principles, with a special emphasis on common building types where acoustics and noise control are often required and noise can have detrimental effects on users, such as athletic facilities and performance spaces.

  • ( ~ 1 hour ) 

    Moisture and soil gas beneath concrete slabs can cause a myriad of problems in both residential and commercial applications. The causes and consequences of these problems are reviewed in this course, along with a discussion on the types and characteristics of under-slab water vapor and soil gas barriers.

Displaying 1 - 25 of 51 results.

FIRST [1-25] [26-50] [51-51] NEXT LAST SHOW ALL