Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 245 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Designing restrooms to allow for and maximize proper hygiene is important in reducing the spread of germs. This course discusses the elements of hygienic restroom design and how reducing required touchpoints helps to increase safety and cleanliness. The key steps in proper hand hygiene are also discussed. The course then focuses on hand dryers and considers their impact on hand hygiene and sustainability. The future of commercial restroom design is then explored.

  • ( ~ 1 hour ) 

    Green building rating system crosswalks are tools that identify where systems are equivalent or aligned, providing a streamlined approach that can help projects achieve dual certifications. This course provides an overview of the crosswalks related to automated window shades and daylight control in LEED® v4.1 Building Design and Construction (BD+C): New Construction and Core and Shell, LEED v4.1 Interior Design and Construction (ID+C): Commercial Interiors, and the WELL Building Standard™ version 2. Also discussed are trade-offs between project parameters and rating system requirements that designers and architects must consider. 

  • ( ~ 1 hour ) 

    Specialty door and frame assemblies have been developed that are designed specifically for the built healthcare environment where performance criteria are critical. Reviewed in this course are specialty door and frame assemblies that meet the challenges of infection prevention, building cleanliness, patient privacy, and increased security, as well as containment of radio wave and radiation interference in hospitals and clinics.

  • ( ~ 1 hour ) 

    Terracotta rainscreen cladding systems enhance building envelope performance through improved moisture management, reflected in the WELL Building Standard™ version 2, as well as through energy efficiency, structural integrity, and durability. The course examines the manufacturing of terracotta cladding, highlighting responsible clay sourcing and postextraction site reclamation, and discusses performance, aesthetics, and sustainability benefits, including how terracotta cladding can contribute to meeting the requirements of LEED® v5 Building Design and Construction (BD+C): New Construction. Additional topics include system color, layout, and wall assembly options, best installation practices, and industry standards and tests.

  • ( ~ 1 hour, 15 minutes ) 

    Rubber has been recycled for more than a century and used in recycled rubber flooring for over 65 years. Over this time, it has been proven to be a durable and flexible product that improves numerous aspects of the built environment while benefiting the natural environment. This course examines the sustainability attributes of recycled rubber flooring, how rubber is recycled, how it is used to make flooring, its health and safety benefits, and where to use and not use the product. The course also includes an overview of how recycled rubber flooring can be used to meet a number of USGBC’s LEED® v4 BD+C and WELL Building Standard® v2 credit requirements.

  • ( ~ 1 hour ) 

    Good acoustic and aesthetic environments are important to the health, safety, comfort, satisfaction, productivity, and general well-being of all building users. This course outlines the benefits of and methodologies for simultaneously creating both with wall and ceiling acoustic treatments. The highly illustrated course includes detailed descriptions of the many acoustic wall and ceiling treatment options available, as well as sample installations.

  • ( ~ 1 hour, 15 minutes ) 

    In the wake of the green movement, combined with rising energy costs, building sustainability has become an important topic. This course examines how foil-faced polyisocyanurate (polyiso) continuous insulation can function as a multiple control layer, providing a building with an air and water-resistive barrier and a thermal control layer. Additionally, this course reviews building codes and standards for meeting the continuous insulation requirements in steel stud building envelope designs, the benefits of using polyiso insulation in wall assemblies, and how polyiso insulation meets NFPA 285 requirements.

  • ( ~ 1 hour ) 

    In today’s building designs, considering the environmental impact of construction projects is of utmost importance. As a result, factors such as durability, installation speed, cost reduction, and long-term value have become crucial aspects of building designs. This course addresses these concerns in the context of nonresidential building renovations, focusing specifically on using state-of-the-art acoustical ceiling coatings as an alternative to removal and replacement with new materials. The course also examines how acoustical ceiling coatings may apply to several credits and features in the LEED® v4.1 Building Design and Construction rating system and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    The reasons for and benefits of adopting STEP have become increasingly clear as both national and international communities continue in their efforts to transition from dirty fuel sources to renewable ones. This course reviews the various systems and strategies that enable STEP, such as smart grids and microgrids, and explores strategies that STEP enables, such as integrated design processes, efficient water management, and energy innovation.

  • ( ~ 1 hour ) 

    Due to advancements in architectural decorative glass technology, the number of design options available to help designers and architects achieve the specific aesthetics and performance requirements they desire has dramatically increased. This course provides a review of architectural decorative glass including product options, applications, features, and specification considerations. Also discussed is how decorative glass can contribute to sustainable design and LEED® initiatives.

  • ( ~ 1 hour ) 

    A naturally occurring radioactive gas, radon is a silent danger to our health. Colorless and odorless, it enters homes and structures through openings in the foundation and below-grade walls, becoming trapped in basements and other poorly ventilated areas. This course looks at methods of controlling radon, how it is addressed in building codes, the advantages of closed-cell spray polyurethane foam (ccSPF) over other insulation materials, and proper installation techniques.

  • ( ~ 1 hour ) 

    Stormwater management is a critical component in any municipality to retain and infiltrate increased runoff volumes and flow rates from developed land that creates increased impervious cover (roofs and pavements). The course discusses the hydrologic and structural design fundamentals of permeable interlocking concrete pavement (PICP) and why it is an excellent choice to help meet stormwater management goals. Discussions include the benefits of using PICP, components of PICP, design and construction considerations and how use of PICP can help earn LEED® credits.

  • ( ~ 1 hour, 30 minutes ) 

    It’s easy to be overwhelmed by outdoor solar lighting specs and components, especially when every manufacturer presents its products differently. Lighting professionals can help clients put these manufacturers on an equal playing field. Providing an in-depth introduction to the technology and benefits of off-grid solar lighting, this course explores why clients choose commercial solar lighting, what components make up a solar lighting system, and the three steps lighting professionals can take to ensure their clients choose a reliable, efficient, and cost-effective solution that meets their unique expectations.

  • ( ~ 1 hour ) 

    This course introduces the learner to the benefits and design advantages of porcelain surface material for both indoor and outdoor use in residential and commercial projects. Since it is a relatively new material in the US, we will review its components and manufacture and how they result in a product with exceptional characteristics for human health and durability. We'll also show and discuss indoor and outdoor applications, the variations available for vertical and horizontal applications, and the many design options. Finally, we’ll help the learner understand what is needed to design with this material and how to work with a fabricator.

  • ( ~ 1 hour ) 

    Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.

  • ( ~ 1 hour ) 

    Resiliency is a growing necessity. It is important to understand the impacts on the built environment resulting from natural and manmade disasters and disturbances and to design for those impacts now. Presented in this course is an overview of the benefits of using steel doors as part of a resilient design strategy for applications requiring resistance to blasts, tornadoes, and ballistics.

  • ( ~ 1 hour ) 

    Despite increasing awareness, stiffer regulations, and improved methodologies, construction waste remains a significant and growing portion of the overall waste stream. Building designers play a significant role in preventing the initial creation of waste by specifying waste-reducing building design and construction methodologies, as well as managing waste in their own offices. This course provides an overview of current construction waste and landfill issues, their potential impacts, and strategies for addressing them. It then focuses on an innovative material sample system that eliminates a sizable portion of the waste generated by construction material samples.

  • ( ~ 1 hour ) 

    Third-party environmental product declarations (EPDs), using a life-cycle analysis (LCA) approach, provide a comprehensive analysis and quantification of a product’s sustainability. This course examines how EPDs can inform sustainable site furniture selection and how the use of sustainable site furniture can contribute to meeting various credit requirements of LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    The planet is currently in a water scarcity crisis, which is significantly affected by toilet water usage. This course examines the current plumbing codes, standards, and regulations that address toilet water usage, the need for and benefits of going beyond current standards, and the goals of a variety of beyond-the-code voluntary standards and rating systems, such as LEED v4 BD+C and ICC 700 National Green Building Standard®. It explains the various types of low-flow and ultra-low-flow toilets, their pros and cons, and their selection criteria. It concludes with a sampling of successful cost- and water-saving installations.

  • ( ~ 1 hour ) 

    Although known for being a strong and versatile building material, there are a number of factors that affect the sustainability of concrete, and a variety of measures that can be taken to increase its durability and extend its service life, thus protecting the health, safety, and welfare of the users. This course discusses the environmental impact of concrete and some of the main causes of concrete deterioration, and examines how crystalline waterproofing technology can be employed to increase the durability and sustainability of concrete.

  • ( ~ 1 hour ) 

    Vinyl has long been a material of choice for construction products for interiors and exteriors because of its durability, cleanability, affordability, and suitability for a vast range of applications. This course furthers the conversation by discussing vinyl’s recyclability and sustainability and the attributes of laminated rigid PVC exterior and interior wall panels and siding and soffit products.

  • ( ~ 1 hour ) 

    Efficient water use and conservation are key parts of sustainable development. Toilets account for the greatest water usage within a residential home (typically 30 percent). Dual-flush toilets are an option to reduce water usage by up to 20 percent while meeting the LEED® v4 Water Efficiency requirements. This toilet option can also be incorporated into accessible bathrooms and use touchless flush plates. The most attractive feature of the dual-flush toilet is that it does not require significant behavioral changes for benefits to be realized.

  • ( ~ 1 hour ) 

    Incorporating sustainable building materials into design practices is essential for creating environmentally responsible, healthy, and resilient built environments. Thermal modification is a tested and proven chemical-free process for increasing the dimensional stability and long-term performance of wood while preserving its natural beauty. Presented are the thermal modification process, the attributes, applications, and favorable environmental impacts of thermally modified wood, and how thermally modified wood can contribute to achieving certification in LEED® v4.1 Building Design and Construction and Interior Design and Construction, Sustainable SITES Initiative® v2, the WELL Building Standard™ version 2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    As more companies invest in solar to generate clean power for their operations, meet environmental goals, or save money on electrical bills, architects and building owners may need to be prepared to accommodate rooftop photovoltaic (PV) systems in both existing and new buildings. This course provides an introduction to rooftop PV systems, including a discussion of modules, components, and attachments, and best practices for a durable roof and PV system.

Displaying 1 - 25 of 245 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST