Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 247 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Provides an overview of the noise issues associated with floor/ceiling assemblies of multifamily dwellings, as well as the factors that affect acoustical performance. Also presented is a review of the acoustical solutions that are available with a focus on sound mats with poured underlayment (SMPU) systems.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    This course examines the evolving expectations for hygiene, sustainability, and cost efficiency in commercial restroom design. Drawing on insights from a global postpandemic survey, it explores how shifting perceptions are influencing design priorities and industry standards. Learners will gain a deeper understanding of strategies and products that promote safety, occupant health, and wellness while achieving measurable environmental, cost, and time savings, and how integrating innovative solutions may help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2. Lastly, real-world project examples illustrate how these considerations can be effectively integrated to enhance performance, sustainability achievements, and user experience in modern commercial restrooms.

  • ( ~ 1 hour ) 

    Although known for being a strong and versatile building material, there are a number of factors that affect the sustainability of concrete, and a variety of measures that can be taken to increase its durability and extend its service life, thus protecting the health, safety, and welfare of the users. This course discusses the environmental impact of concrete and some of the main causes of concrete deterioration, and examines how crystalline waterproofing technology can be employed to increase the durability and sustainability of concrete.

  • ( ~ 1 hour ) 

    The AIA Materials Pledge identifies five impact areas that building products and materials can and should address: ecosystem health, social health and equity, circular economy, climate health, and human health. This course reviews the concepts, certifications, and tools designers can apply to choose materials that support these five impact areas, including the mindful MATERIALS Common Materials Framework (CMF), the industry’s first common language for sustainable building materials. Finally, the course presents practical examples of exemplary products and materials and assesses them using this framework.

  • ( ~ 1 hour ) 

    The savings that water conservation measures can provide are real and practical and offer enormous untapped potential. One of the best ways to boost conservation really hasn’t been thoroughly utilized, yet it’s right here at our fingertips: faucets. This course provides an overview of commercial faucets, including the evolution of the modern faucet, design and installation considerations, and the faucet’s impact on water conservation and green building programs.

  • ( ~ 1 hour ) 

    Good acoustic and aesthetic environments are important to the health, safety, comfort, satisfaction, productivity, and general well-being of all building users. This course outlines the benefits of and methodologies for simultaneously creating both with wall and ceiling acoustic treatments. The highly illustrated course includes detailed descriptions of the many acoustic wall and ceiling treatment options available, as well as sample installations.

  • ( ~ 1 hour ) 

    Sound control is a critical element in a building’s design. We all think of the walls, ceiling, and floor when discussing sound attenuation, but without the proper acoustic door, the sound-control goals in an acoustic plan may not be met. This course reviews healthy sound levels and how to test and identify target STC ratings. Also discussed are the elements of acoustic door assemblies and how they address fire ratings and ADA compliance, contribute to LEED® certification and green building, and provide security for classified files and electronic data.

  • ( ~ 1 hour ) 

    In light of the recent pandemic and the increasing frequency of wildfires, there is growing awareness around the impact of air quality, particularly in indoor environments. Building systems that manage air circulation and ventilation play a crucial role in supporting occupant health and well-being and can help meet indoor air quality credit requirements in the LEED® v5 Building Design and Construction, Interior Design and Construction, and Operations and Maintenance rating systems and the WELL Building Standard™ version 2. This course provides an overview of indoor air quality (IAQ) and offers strategies for improving it through responsive design and technology.

  • ( ~ 1 hour ) 

    Designing restrooms to allow for and maximize proper hygiene is important in reducing the spread of germs. This course discusses the elements of hygienic restroom design and how reducing required touchpoints helps to increase safety and cleanliness. The key steps in proper hand hygiene are also discussed. The course then focuses on hand dryers and considers their impact on hand hygiene and sustainability. The future of commercial restroom design is then explored.

  • ( ~ 1 hour ) 

    Trees are essential for the health of the urban environment, mitigating the heat island effect, cleaning the air, reducing stormwater runoff, and improving residents’ health and well-being. But cities are often inhospitable to trees, where their growth may be stunted or their roots may damage surrounding infrastructure. This course explores ways to design successful projects incorporating green infrastructure by understanding the principles behind tree growth, proper type and amount of soil, water management, and the role of soil vault systems in helping urban trees thrive.

  • ( ~ 1 hour ) 

    Stormwater management is critical in an era when severe storms and sewer overflows are increasing in many areas. In urban contexts where open space is at a premium, using on-structure bioretention planters can be the ideal approach. This course explores the benefits of bioretention and how bioretention planters reduce peak flows and improve water quality. The course also discusses how bioretention planters should be designed, can perform as amenities, and contribute to meeting the requirements of green building certification programs.

  • ( ~ 1 hour ) 

    Restrooms and other plumbing applications must comply with accessibility regulations, but do you know exactly how to do that? This course is a handy reference that explains what codes and regulations you must satisfy, when those requirements apply to new construction and alterations, and how to select and install fixtures to meet accessibility standards and the requirements of the LEED® v5 for Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ v2.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour, 15 minutes ) 

    Research indicates that the quality of light directly affects the quality of life in a space; access to daylight and outdoor views promotes happiness and productivity. Reviewed in this course are the features of polycarbonate sheeting systems and how they contribute to energy-efficient daylighting design, as well as the overall health and well-being of the building occupants.

  • ( ~ 1 hour ) 

    In the fight against climate change, efforts intensify against the planet’s number one enemy—carbon dioxide. The building industry will play a significant role in these efforts. Embodied carbon—the global greenhouse gas emissions generated from sourcing raw material and processing, manufacturing, transporting, and installing building materials—will be the target over the next decade. This course will define embodied carbon, its impact on greenhouse gas emissions, the construction industry's impact, and the methods and tools that building designers can employ to limit embodied carbon.

  • ( ~ 1 hour ) 

    In today’s building designs, considering the environmental impact of construction projects is of utmost importance. As a result, factors such as durability, installation speed, cost reduction, and long-term value have become crucial aspects of building designs. This course addresses these concerns in the context of nonresidential building renovations, focusing specifically on using state-of-the-art acoustical ceiling coatings as an alternative to removal and replacement with new materials. The course also examines how acoustical ceiling coatings may apply to several credits and features in the LEED® v4.1 Building Design and Construction rating system and the WELL Building Standard™ version 2.

  • ( ~ 1 hour, 15 minutes ) 

    As interest in cross-laminated timber (CLT) buildings grows, the market for building enclosure products as a whole has yet to fully provide the water-resistant barriers, vapor retarders, and air barriers to optimally support the unique characteristics of wood. Furthermore, there are few building enclosure design guides specific to detailing wood-framed walls and roofs. This comprehensive course fills the gaps, providing detailed information on mass timber, building enclosure issues, the vapor-permeable technology available to address wood’s unique moisture characteristics, and a how-to guide on detailing the walls and roof of the enclosure.

  • ( ~ 1 hour ) 

    High-performance coatings are a necessity when it comes to protecting building exteriors and restoring them after harsh weathering and UV degradation; the right coatings prolong a building exterior’s life span and divert materials from landfills. New PVDF coating systems provide superior protection while satisfying aesthetic and environmental considerations. Their various characteristics and benefits are explored, and application methods are discussed.

  • ( ~ 1 hour ) 

    Natural stone pathways offer functional, sustainable solutions that maximize user enjoyment of outdoor spaces without compromising aesthetics. This course reviews pathway material options in terms of durability, appearance, and financial and environmental costs and benefits. The focus is on three natural stone pathway mixes, designed to meet the permeability, erosion resistance, accessibility, traffic level, and installation and maintenance requirements of any project. Also reviewed are how these materials may contribute toward credits in the LEED® v5 Building Design and Construction and Sustainable SITES Initiative® (SITES®) v2 rating systems.

  • ( ~ 1 hour ) 

    Currently, buildings are the single biggest contributor to GHG emissions, accounting for roughly half of all energy consumption in the U.S. and globally. It is crucial to reduce this level of consumption by including high-performance envelope strategies such as shading systems in all new building designs. In this course, we look at shading systems, examine shading and design strategies, and learn tips for successful selection and design.

  • ( ~ 1 hour ) 

    Homeowners are increasingly interested in creating outdoor living spaces that enhance their enjoyment and increase their homes’ energy efficiency. This course outlines how retractable screens offer sustainable design solutions for homeowners, architects, and builders. Topics discussed include screen components and how retractable screens offer protection from insects and UV rays and contribute to enhancing a home’s energy efficiency. Various case studies focusing on sustainability are examined.

  • ( ~ 1 hour, 15 minutes ) 

    The hospitality industry thrives on positive customer experiences. These experiences are often shared on social media, and reviews of a restaurant or hotel now commonly include the acoustical aspects of the experiences. Hospitality venues must be constructed to the highest standards in order to achieve the necessary level of customer satisfaction; this includes providing a positive acoustic environment for a wide range of situations. In addition to reviewing the basics of sound, sound movement, and sound measurement, this course details the comprehensive range of applications available to the designer to block unwanted noises, control the acoustics in large venues, and provide complete privacy where it is needed while improving the aesthetic appeal of each space as a result.

  • ( ~ 1 hour ) 

    Multiwall polycarbonate is an extremely versatile glazing material with high impact strength, excellent thermal insulation, and long-term light transmission. Compared to glass, it is much lighter and easier to handle, offering considerable savings in transportation, labor, and building costs. This course examines how multiwall polycarbonate systems can improve thermal energy efficiency and increase daylighting within a space, enhancing occupant productivity, health, and well-being.

  • ( ~ 1 hour, 15 minutes ) 

    Residential solar power generates clean energy, reduces carbon footprint, protects against rising electricity rates, and protects property from outages, but it is only effective during daylight hours. Adding battery storage to a solar system—called solar plus storage—removes this limitation and moves a home closer to energy independence. In this course, we will review the components of a solar-plus-storage system, including selection considerations for residential rooftop solar and DC-coupled solar batteries. The course also reviews the extended system of monitoring and DC charging.

Displaying 1 - 25 of 247 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST