Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 245 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour, 30 minutes ) 

    There is no substitute for the natural beauty of newly installed tropical hardwood, but keeping it looking great and achieving the desired performance over time require careful attention to detail. Choosing the best hardwood species and specifying the appropriate fastening and finishing systems will ensure an aesthetically pleasing, low-maintenance, and successful design in terms of installation, performance, and appearance. This course discusses wood species specification, installation techniques, and finishing methods for tropical hardwoods in conventional and sustainable buildings. As well, international programs that are used to successfully determine sustainability are examined.

  • ( ~ 1 hour ) 

    Structural HDPE plastic lumber offers strength, durability, and design versatility and is a sustainable alternative to traditional building materials. This course examines the types of structural HDPE plastic lumber and their manufacturing processes and provides technical information on performance attributes, suitable applications, installation considerations, and design guidelines. Comparisons are made to wood and wood-plastic composite lumber. Also presented is how recycled HDPE plastic lumber may help meet credit requirements in the Sustainable SITES Initiative® (SITES® v2) and LEED® v4.1 Building Design and Construction (BD+C) and Residential BD+C rating systems. Case studies demonstrate the exemplary performance of structural HDPE plastic lumber in aggressive environmental conditions.

  • ( ~ 1 hour ) 

    As more companies invest in solar to generate clean power for their operations, meet environmental goals, or save money on electrical bills, architects and building owners may need to be prepared to accommodate rooftop photovoltaic (PV) systems in both existing and new buildings. This course provides an introduction to rooftop PV systems, including a discussion of modules, components, and attachments, and best practices for a durable roof and PV system.

  • ( ~ 1 hour ) 

    Through sustainable management, the forests of New England have had a remarkable comeback since the 1830s, with eastern white pine being the most represented softwood in these forests. This light, yet strong wood species has been used for generations and today, meets the requirements of a renewable and sustainable building material. This course reviews eastern white pine’s contribution to sustainability, its grading rules, wood products, and many applications.

  • ( ~ 1 hour ) 

    This presentation celebrates the value of incorporating artisanal, handcrafted fixtures and furnishings into a building’s design. Not only are these products unique, functional, and aesthetically appealing, but they can also establish a sense of connection with their maker. Many artisanal, handcrafted products are made using traditional techniques that have been passed down over time, often from generation to generation. And because many of these products are made from sustainable, recycled, or reclaimed materials that are locally available, they can help reduce the environmental impact of a new build. This course illustrates how sourcing artisan-made products for their projects can allow designers and builders to effect social, economic, and environmental change.

  • ( ~ 1 hour, 30 minutes ) 

    Air curtain units (ACUs) provide a controlled airstream across a door or opening, creating a seamless barrier between two distinct spaces while enabling smooth, uninterrupted traffic flow. Air curtains fulfill numerous purposes and provide building owners with significant energy savings. This course examines how air curtains work and how they reduce whole-building energy consumption and contribute to occupant wellness and safety. The role of air curtains in limiting the infiltration of insects, pathogens, and outside pollutants while maintaining thermal comfort and good indoor air quality is explained. ACU selection and installation considerations are also discussed.

  • ( ~ 1 hour, 15 minutes ) 

    Our built environment must be optimized to create comfortable and healthier spaces. Shading systems can be used to enhance our spaces by providing optimal daylight and comfort to create an ideal indoor environment. This course reviews the performance, aesthetics, and material health of various shadecloth compositions and how each factor contributes to the shadecloth selection process.

  • ( ~ 1 hour ) 

    As the market continues to transform the way sustainable buildings are designed, single-skin metal roof and siding products are at the forefront of contributing to healthier built environments. This course breaks down the material inputs and sustainable attributes of single-skin metal roof and siding panels and includes an overview of how the panels can contribute toward earning several LEED ® for Building Design and Construction credits in v4.1.

  • ( ~ 1 hour ) 

    Stormwater management is critical in an era when severe storms and sewer overflows are increasing in many areas. In urban contexts where open space is at a premium, using on-structure bioretention planters can be the ideal approach. This course explores the benefits of bioretention and how bioretention planters reduce peak flows and improve water quality. The course also discusses how bioretention planters should be designed, can perform as amenities, and contribute to meeting the requirements of green building certification programs.

  • ( ~ 1 hour ) 

    Net zero energy ready buildings are a popular topic in today's world of climate change. This course explores how energy efficiency has expanded toward exterior wall assemblies, where thermal bridging and thermally broken subframing systems are becoming the new norm.

  • ( ~ 1 hour ) 

    This course examines the design and benefits of pre-engineered trench drains in a sustainable wastewater management system. Discover how they effectively manage water runoff, prevent ponding, and enhance safety in transportation, industrial facilities, and public spaces while supporting sustainable practices. Explore system types, maintenance strategies, and performance optimization, along with guidance on funding and compliance. Gain the knowledge to implement smarter, safer, and more efficient water management solutions in your next project.

  • ( ~ 1 hour ) 

    The facade is one of the most significant contributors to the energy consumption and comfort parameters of any building. This course explores high-performance building envelopes and the use of advanced insulated metal panel systems featuring integrated daylighting and ventilation components that combine to provide weathertightness and maximum thermal performance.

  • ( ~ 1 hour, 30 minutes ) 

    Continuous insulation is part of building standards and state and energy codes due to its ability to reduce thermal bridging and the associated heat loss and energy consumption. This course looks at the use of polyisocyanurate as a continuous insulation in Type V and residential construction and its use as a multifunctional envelope component—air barrier, weather-resistive barrier, and vapor retarder—by reviewing code requirements for the building envelope.

  • ( ~ 1 hour, 15 minutes ) 

    Building owners have come to rely on weatherable coatings to provide long-term protection to their buildings. With an increased focus on sustainability, performance, and durability, PVDF resin-based coatings can help architects and painting contractors exceed their clients’ design goals. This course covers the key components and functions of high-performance weatherable coatings and looks at how these coatings contribute to sustainable design.

  • ( ~ 1 hour, 15 minutes ) 

    White roofs made of PVC (vinyl) can reflect three-quarters or more of the sun's rays and emit 70% or more of the solar radiation absorbed by the building envelope. Despite protecting and keeping buildings cool in all climates around the world for decades, misconceptions about the energy impact of cool roofs still exist. This course uses the fundamental science behind cool roofs to address alleged issues concerning the performance of cool roof products.

  • ( ~ 1 hour ) 

    Exterior shading devices offer a number of advantages that contribute to a more sustainable building, including minimizing cooling costs, reducing peak electricity demand, and controlling glare. These benefits result in greater occupant comfort and improved productivity. This course provides a review of exterior aluminum shading device systems, including the components, finishes, and design and engineering considerations, as well as a discussion of how shading strategies contribute to LEED® certification.

  • ( ~ 1 hour ) 

    The savings that water conservation measures can provide are real and practical and offer enormous untapped potential. One of the best ways to boost conservation really hasn’t been thoroughly utilized, yet it’s right here at our fingertips: faucets. This course provides an overview of commercial faucets, including the evolution of the modern faucet, design and installation considerations, and the faucet’s impact on water conservation and green building programs.

  • ( ~ 1 hour ) 

    With the ever-increasing focus on the sustainable built environment, building owners, architects, engineers, and contractors are incorporating structural steel into their designs. Presented here is a comprehensive view of the cradle-to-cradle structural steel supply chain from a sustainability perspective. Also discussed are steel production and design, steel’s potential contribution to LEED v4 credits, thermal capacity, and the environmental and life cycle benefits of prefabricated fireproof steel columns.

  • ( ~ 1 hour ) 

    Low Impact Development (LID) has several advantages over traditional stormwater management approaches. Since impervious pavement is the main source of stormwater runoff, LID strategies recommend permeable paving for hard surfaces. The course discusses LID, its goals and principles, and how they are achieved. It provides an overview of permeable pavements, and more particularly, plastic permeable grid paver systems and how they support LID goals.

  • ( ~ 1 hour ) 

    Designers, building users, and managers are increasingly focused on building and occupant health as well as energy conservation. This course explores how mixed-mode (hybrid) ventilation systems address all these issues by improving the ratio of fresh air introduced into buildings while reducing energy needs and costs. It describes the benefits, elements, and workings of these systems and provides design guidance and illustrative case studies.

  • ( ~ 1 hour, 30 minutes ) 

    Permeable interlocking concrete pavement (PICP) has the ability to create solid, strong surfaces for pedestrians and a range of vehicular uses; it can help maintain a site’s existing natural hydrologic function and reduce the overall impact of development. This course discusses the components of a PICP system and how they work together to manage stormwater in a variety of applications. Also addressed are hydrological and structural factors to consider when designing with PICP and how PICP contributes to sustainable building goals and projects.

  • ( ~ 1 hour ) 

    Incorporating nature into the built environment through biophilic design increases occupant well-being, productivity, and health and is an integral component of an ecologically healthy and sustainable community. Presented here is an overview of biophilic design, its relationship to sustainability, and its positive human, environmental, and economic outcomes. Case studies demonstrate how rooftop deck systems can contribute to biophilic and sustainable design objectives.

  • ( ~ 1 hour ) 

    Cellulose insulation has been used successfully by builders and designers for hundreds of years to provide comfort and warmth. Today, builders and designers also consider sustainability principles, climate change, occupant health and wellness issues, energy conservation, and carbon sequestration. Advanced cellulose insulation addresses all those areas as well. This course explains its environmental benefits, including its carbon capture ability, how it improves occupant health and well-being, and its numerous high-performance thermal, acoustic, and fire-resistant attributes.

  • ( ~ 1 hour ) 

    Infrared patio heaters sustainably increase safety and comfort in outdoor entertaining areas. There are many variables in creating ambient warmth, and the effectiveness and cost of heating an outdoor space depend on the design of the selected heating option. This course looks at the available outdoor heating options and their sustainability profiles, focusing on the types, color choices, mounting methods, and control options of electric infrared heaters. It includes a review of the steps required to select the best solution.

  • ( ~ 1 hour ) 

    Resiliency is a growing necessity. It is important to understand the impacts on the built environment resulting from natural and manmade disasters and disturbances and to design for those impacts now. Presented in this course is an overview of the benefits of using steel doors as part of a resilient design strategy for applications requiring resistance to blasts, tornadoes, and ballistics.

Displaying 1 - 25 of 245 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST