Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 234 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Concrete-faced insulated products are composite prefinished panels that are used to construct walls and roofing assemblies to maximize the energy efficiency, durability, and performance of a building envelope. This course discusses the design criteria used in designing energy-efficient buildings using concrete-faced continuous insulation systems for low-slope roofing, walls, and foundations. The functional and physical features of protective membrane roof (PMR) systems, concrete-faced insulated panels for walls and foundations, and concrete structural insulated panels (CSIPs) are evaluated.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour ) 

    People are captivated by birds, and for many, they hold intrinsic value. However, millions of birds collide with glass every year, significantly impacting avian populations. This course examines the ecological services that birds perform that impact human wellness and safety and reviews how bird-friendly glass can mitigate collisions. Various bird-friendly glass examples are also identified, and design guidelines and existing legislation mandating bird-friendly buildings is discussed.

  • ( ~ 1 hour, 15 minutes ) 

    One of the most important concepts behind biophilia is the “urge to affiliate with other forms of life” (E.O. Wilson). Humans are connected to nature, inspired by nature, and desire to be harmonized with nature. This course discusses the main principles of biophilic design and explains how a connection with nature benefits human well-being, increases classroom performance, and reduces stress. Multiple case studies demonstrating the positive benefits of daylight and views on building occupants are discussed, and applications of biophilic design are examined.

  • ( ~ 1 hour ) 

    This course aims to educate learners about the chemistry of spray-applied polyurethane foam (SPF), its various applications in the construction industry, safe handling and installation, and its contribution to sustainable design. The advantages of using SPF are highlighted in terms of its benefits to energy conservation and fire safety. Its role as a high-performance air barrier that satisfies code and LEED® criteria and complies with various standards is also discussed.

  • ( ~ 1 hour ) 

    No discussion about a material’s sustainability is complete unless it addresses embodied carbon, the carbon dioxide (CO₂) emissions associated with the material over its cradle-to-grave life cycle. Changes made to spray polyurethane foam (SPF) insulation formulations address the impacts of embodied carbon. This course explores the evolution and environmental impacts of SPF blowing agents, the performance benefits of SPF, physical property testing and certifications, and SPF’s potential LEED® v4 contributions. Case studies make evident the performance value of SPF.

  • ( ~ 1 hour ) 

    Modern hydronic radiator systems are an energy-efficient, healthy, and hygienic solution for residential and commercial applications. This course discusses the principles of radiant heating and panel radiators, and how to size panel radiators for residential applications.

  • ( ~ 1 hour ) 

    Light is fundamental to life, and Earth’s 24-hour light–dark cycle directly impacts our physiology and behavior. Indoors, reduced exposure to daylight and increased exposure to electric light after dark interfere with circadian rhythms. This course examines how circadian rhythms affect human performance, health, and well-being, the receptors in the eye that send visual and nonvisual responses to the brain, the action spectrum for circadian stimulus, and the metrics used to quantify circadian-stimulus light. Also presented are methods for applying circadian-effective lighting systems to satisfy the requirements of WELL Building Standard™ v2, Light, Feature L03, Circadian Lighting Design.

  • ( ~ 1 hour ) 

    The strength, versatility, local availability, and ease of use of concrete help make it the most consumed manufactured substance in the world. Concrete also offers sustainability and resilience benefits: a long lifespan, low maintenance needs, durability against natural disasters, high-albedo surfaces, smoother and stiffer pavement, carbon sequestration capabilities, and increased building energy efficiency. This course describes some of the new technologies that continue to evolve to produce concrete with the same performance and benefits as traditional concrete but with a lower carbon footprint. Also discussed is how to specify low-carbon concrete using EPDs, a carbon budget, and performance-based specifications and how it can contribute to the Building Design and Construction rating systems of LEED® v4.1 and the upcoming LEED v5.

  • ( ~ 1 hour, 15 minutes ) 

    This course is designed to educate and raise awareness among landscapers and architects to assist them in making correct turfgrass selections for their projects. The focus is on warm-season sod turfgrasses suited for the southern and midsection tiers of the United States. The selection criteria and best practices for sodding and maintaining turfgrass are reviewed, along with an introduction to proprietary cultivars designed to offer improved aesthetics, greater tolerances, and fewer inputs.

  • ( ~ 1 hour ) 

    Automated-shading systems are designed to maximize natural daylight, increase building energy efficiency, and ensure occupants have a comfortable environment with views to the outside. This course will explain how an automated shading system predicts, monitors, and responds to the daily microclimate surrounding a building to effectively manage daylight, solar-heat gain, occupant comfort levels, and energy use demands.

  • ( ~ 1 hour, 15 minutes ) 

    The diffuse light-transmitting and composite technology of translucent structural sandwich panels has increasingly caught the imagination of architects and designers because it is possible to maximize wall or roof daylighting while minimizing energy loss, with consequent savings in the running costs of heating, air conditioning, and artificial lighting. This course explores the fundamental connection between light and health by examining how translucent structural sandwich panels deliver glare-free, diffuse daylight deeper and more evenly into spaces with maximum thermal efficiency.

  • ( ~ 1 hour ) 

    Incorporating sustainable building materials into design practices is essential for creating environmentally responsible, healthy, and resilient built environments. Thermal modification is a tested and proven chemical-free process for increasing the dimensional stability and long-term performance of wood while preserving its natural beauty. Presented are the thermal modification process, the attributes, applications, and favorable environmental impacts of thermally modified wood, and how thermally modified wood can contribute to achieving certification in LEED® v4.1 Building Design and Construction and Interior Design and Construction, Sustainable SITES Initiative® v2, the WELL Building Standard™ version 2, and the Living Building Challenge (LBC).

  • ( ~ 1 hour ) 

    Metal roofing offers longevity, durability, and visual appeal. Today, a range of color and finish options are available that afford specifiers broad design flexibility. This course explores key solar reflectance and sustainability considerations when evaluating metal roofing colors and how selection relates to requirements in codes and green building programs such as LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2. Case studies demonstrate how metal roofing colors have been used to meet design and sustainability objectives.

  • ( ~ 1 hour ) 

    A rooftop solar photovoltaic system offers myriad benefits to both building owners and the environment; to maximize the benefits, however, it is important to be aware of the potential causes and effects of problems with rooftop installations. This course presents the issues to consider to prevent damaging the roof, voiding the roofing warranty, and incurring additional costs. Solar system mounting options are explored in terms of how they can help eliminate concerns around rooftop installations.

  • ( ~ 1 hour ) 

    As urban areas become denser, land values increase, and the demand for space becomes more challenging, developers are seeking alternative, innovative approaches to parking cars that allow a project to proceed while meeting all parking and sustainability requirements. Automated parking systems, parking lifts, and multilevel car stackers provide multiple benefits for developments, car parking operations, and vehicle storage facilities. High-density parking systems can help to maximize ROI with a reduced parking footprint and better building flow; reduce construction costs and operational overheads; and improve safety, security, and sustainability. This course explains the types of high-density parking systems, their sustainable advantages, and design considerations.

  • ( ~ 1 hour ) 

    With the ever-increasing focus on the sustainable built environment, building owners, architects, engineers, and contractors are incorporating structural steel into their designs. Presented here is a comprehensive view of the cradle-to-cradle structural steel supply chain from a sustainability perspective. Also discussed are steel production and design, steel’s potential contribution to LEED v4 credits, thermal capacity, and the environmental and life cycle benefits of prefabricated fireproof steel columns.

  • ( ~ 1 hour, 15 minutes ) 

    Residential solar power generates clean energy, reduces carbon footprint, protects against rising electricity rates, and protects property from outages, but it is only effective during daylight hours. Adding battery storage to a solar system—called solar plus storage—removes this limitation and moves a home closer to energy independence. In this course, we will review the components of a solar-plus-storage system, including selection considerations for residential rooftop solar and DC-coupled solar batteries. The course also reviews the extended system of monitoring and DC charging.

  • ( ~ 1 hour ) 

    Adequate water consumption is essential to human health, and many turn to bottled water for convenience or out of concerns about the public drinking water supply. But bottled water presents its own water quality issues along with environmental impacts of disposable plastic bottles. This course explores bottle-filling stations that offer safer, convenient, sustainable hydration in a wide range of applications. Also reviewed are the features, benefits, and installation options of bottle-filling stations and how they contribute to drinking water requirements in the WELL Building Standard™ (WELL™) version 2.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

  • ( ~ 1 hour ) 

    In response to a stronger emphasis on natural resources, building efficiencies, and occupant welfare, manufacturers continue to improve design service offerings, product performance, and installation solutions. Fiberglass fenestration meets these demands for residential and commercial design in the built environment. This course explores the performance attributes of fiberglass fenestration, energy efficiency and structural benefits, testing and verification processes, and contributions to healthy building occupancy.

  • ( ~ 1 hour ) 

    Embodied carbon represents a significant portion of the building industry’s carbon footprint; it is essential to utilize low-carbon construction processes and materials now, before the tipping point of the climate crisis is reached. This course discusses the use of LCAs and EPDs as tools to measure the carbon footprint and environmental impacts of building products and how architects and designers can utilize them to make sustainable choices in the design stages of a project. The course also looks at the growing relevance of EPDs in policies and green building standards, such as the Building Design and Construction rating systems of LEED® v4.1 and the upcoming LEED v5.

  • ( ~ 1 hour ) 

    Resilient flooring offers a wide variety of natural wood, stone, and abstract visual designs in numerous formats and installation options. Luxury vinyl flooring (LVF) and stone polymer composite (SPC) are types of resilient flooring designed to replicate the appearance of wood and stone without the labor, maintenance, or cost of natural materials. This course delves into the types, composition, performance features, and applications of LVF and SPC flooring designed for durable and aesthetically pleasing solutions for commercial and residential applications.

  • ( ~ 1 hour ) 

    Professional sports stadiums form large complexes with enormous impacts on the environment and local communities. Owners, architects, and operations managers can use this influence to generate a net positive effect on people, the natural environment, and the bottom line. In this video, the executives and consultants involved in the design and daily operation of Gillette Stadium and Mercedes-Benz Stadium discuss the challenges and opportunities of sustainable stadium design. Topics discussed include district energy generation, gray water treatment, evaluation and implementation of new technologies, partnering with local utilities, cost recovery, profitability, and community health.

  • ( ~ 1 hour, 15 minutes ) 

    Energy codes at the federal, state, and local levels increasingly focus on reducing energy consumption, saving consumers money, and reducing CO2 emissions. Whether new or recently updated, energy codes play an essential role in the buildings we design, build, and ultimately live, work, and play in. This course examines the lighting requirements and provisions of ASHRAE Standard 90.1-2019 and the 2021 International Energy Conservation Code ® , with a focus on plug and lighting control strategies for energy efficiency.

Displaying 1 - 25 of 234 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST