Green Building Certification Inc.

The "GBCI CE" mark indicates that the course, as described in the application and materials submitted by the provider to USGBC, holds a General CE designation and meets the General CE conditions set out in the USGBC Education Partner Program course guidelines.

Click to Learn More About GBCI

Displaying 1 - 25 of 245 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    People are captivated by birds, and for many, they hold intrinsic value. However, millions of birds collide with glass every year, significantly impacting avian populations. This course examines the ecological services that birds perform that impact human wellness and safety and reviews how bird-friendly glass can mitigate collisions. Various bird-friendly glass examples are also identified, and design guidelines and existing legislation mandating bird-friendly buildings is discussed.

  • ( ~ 1 hour ) 

    Properly selected acoustical solutions are necessary to provide acoustical comfort and performance for a range of applications. This course reviews acoustic theory and design methodology to facilitate the design and specification process. A particular emphasis is placed on performance-oriented designs and strategies for different project types.

  • ( ~ 1 hour ) 

    Originally developed to reduce solar heat gain from entering through a pane of glass, window films in today’s market provide UV protection, reduce glare, reduce fading, increase occupant comfort, offer safety and security, and yield energy savings. This course evaluates the performance of different types of solar control window films and offers daylighting strategies for commercial, retail, and residential building and architectural applications.

  • ( ~ 1 hour ) 

    This course provides a comprehensive overview of quartz surfacing as a sustainable material in contemporary design. It examines the environmental impact, safety standards, and wide-ranging applications of quartz surfacing. The course focuses on manufacturing processes, performance characteristics, and the material’s contribution to sustainability, equipping participants with the knowledge to effectively utilize quartz surfacing in residential and commercial projects.

  • ( ~ 1 hour ) 

    Recycled rubber flooring is an environmentally responsible material that outlasts many types of traditional commercial flooring products when exposed to normal foot traffic stress. Interior and exterior recycled rubber surfacing products are explored in terms of their sustainable design benefits and applications. The program includes discussions on rubber manufacturing, postconsumer tires, and green building certification systems.

  • ( ~ 1 hour ) 

    The United Nations has set 2030 as the deadline for member nations to achieve the 17 Sustainable Development Goals. The construction industry has set complementary goals, including the AIA 2030 Commitment to reach net zero emissions in the built environment by 2030. This course discusses how circular economy building products are necessary to achieve sustainable design goals and presents the case study of Kohler WasteLAB, a small manufacturing business within Kohler Company that creates beautiful products for the home from waste.

  • ( ~ 1 hour ) 

    It is an expectation that today’s buildings have to be more than just aesthetically pleasing: they have to provide measurable environmental benefits. This course outlines how insulated concrete forms (ICFs) help meet sustainable design objectives and examines the advantages that ICFs and ICF technology have over conventional construction materials for building envelopes in all building types.

  • ( ~ 1 hour ) 

    Rooftop deck systems offer the design flexibility to create adaptable, sustainable outdoor spaces that provide myriad environmental, social, economic, and aesthetic benefits. This course presents the three pillars of sustainability and how building products, materials, and systems can contribute to sustainable design. It outlines forest management objectives and practices and the responsible sourcing of wood for rooftop deck tiles. Case studies exemplify how rooftop deck systems can contribute to sustainable design objectives.

  • ( ~ 1 hour ) 

    Acoustical doors are vital in managing sound transmission in various architectural and industrial settings. This course discusses evaluating, specifying, and integrating acoustical doors into projects that demand effective noise control, speech privacy, and occupant comfort. It also examines how acoustical doors may help meet credit requirements in the LEED® v5 Building Design and Construction rating system and the WELL Building Standard™ version 2. Compliance with fire safety codes and SCIF specifications is also discussed.

  • ( ~ 1 hour ) 

    Concrete is a very versatile and fundamental building material; however, because it is porous and wicks water through its matrix, concrete has water-related design challenges. This program examines the sustainable benefits of integral concrete waterproofing and analyzes traditional waterproofing methods as compared to integral methods in terms of performance, durability, risk, cost, and construction timeline.

  • ( ~ 1 hour ) 

    Sound control is a critical element in a building’s design. We all think of the walls, ceiling, and floor when discussing sound attenuation, but without the proper acoustic door, the sound-control goals in an acoustic plan may not be met. This course reviews healthy sound levels and how to test and identify target STC ratings. Also discussed are the elements of acoustic door assemblies and how they address fire ratings and ADA compliance, contribute to LEED® certification and green building, and provide security for classified files and electronic data.

  • ( ~ 1 hour, 15 minutes ) 

    ICF construction is cost effective and sustainable, and is a superior way to build stronger, quieter, healthier, and more energy-efficient commercial structures. This course explores insulated concrete form (ICF) construction, describing the forms themselves and their construction, performance, and sustainable benefits. Also presented are design guidelines, the installation process, flooring systems, and commercial project applications.

  • ( ~ 1 hour, 15 minutes ) 

    Energy codes at the federal, state, and local levels increasingly focus on reducing energy consumption, saving consumers money, and reducing CO2 emissions. Whether new or recently updated, energy codes play an essential role in the buildings we design, build, and ultimately live, work, and play in. This course examines the lighting requirements and provisions of ASHRAE Standard 90.1-2019 and the 2021 International Energy Conservation Code ® , with a focus on plug and lighting control strategies for energy efficiency.

  • ( ~ 1 hour ) 

    Identifying, salvaging, and reusing stone and brick is a multifaceted strategy that benefits the environment, economy, and society. It represents a practical and visionary approach to building and design that respects the past, enhances the present, and prepares for a more sustainable future. This course reviews the impact of stone and brick reclamation by examining case studies focusing on modern American architecture and interior and exterior design. The course discusses how material repurposing benefits a society increasingly concerned about environmental sustainability.

  • ( ~ 1 hour ) 

    Structural HDPE plastic lumber offers strength, durability, and design versatility and is a sustainable alternative to traditional building materials. This course examines the types of structural HDPE plastic lumber and their manufacturing processes and provides technical information on performance attributes, suitable applications, installation considerations, and design guidelines. Comparisons are made to wood and wood-plastic composite lumber. Also presented is how recycled HDPE plastic lumber may help meet credit requirements in the Sustainable SITES Initiative® (SITES® v2) and LEED® v4.1 Building Design and Construction (BD+C) and Residential BD+C rating systems. Case studies demonstrate the exemplary performance of structural HDPE plastic lumber in aggressive environmental conditions.

  • ( ~ 1 hour ) 

    This course explores the critical role of shade in urban design, public health, and climate resilience. It examines how natural, built, and combined shading systems reduce heat exposure, support thermal comfort, and enhance the usability of outdoor spaces. Through case studies, technical analysis, and planning frameworks, participants will learn how to evaluate shade needs, select appropriate solutions, and integrate shade into parks, plazas, transit stops, and other public environments.

  • ( ~ 1 hour ) 

    Palm is a plentiful but underused resource with many possibilities to enhance architectural design. This course describes the growth, harvesting, and rendering of palm, how it is manufactured into flooring, plywood, and paneling products, and what to consider when specifying and installing. A detailed look at the products available as well as project examples demonstrates how palm products may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Through sustainable management, the forests of New England have had a remarkable comeback since the 1830s, with eastern white pine being the most represented softwood in these forests. This light, yet strong wood species has been used for generations and today, meets the requirements of a renewable and sustainable building material. This course reviews eastern white pine’s contribution to sustainability, its grading rules, wood products, and many applications.

  • ( ~ 1 hour, 15 minutes ) 

    There are a multitude of building envelope products used and a variety of methods taken for achieving energy and building code requirements. Understanding the different roles a product plays in the envelope simplifies its design. In this course, we take a look at the code requirements for buildings classified as IBC Types I–IV, paths to achieving compliance, and the number of roles polyisocyanurate insulation plays in meeting these requirements.

  • ( ~ 1 hour ) 

    Water is one of our most valuable resources, yet many states suffer water shortages due to preventable problems such as overuse and leakages. This course discusses the increased need for water conservation and examines the requirements in CALGreen and the LEED® v4.1, Green Globes®, and BREEAM In-Use green building rating systems. The EPA’s WaterSense® initiative is also discussed, along with case studies explaining the benefits of concealed toilet systems and their contribution to water conservation. This course is one of two identical courses titled Water Conservation: Initiatives and Standards . You will receive credit for taking only one of these courses.

  • ( ~ 1 hour ) 

    Structural laminated decking allows the beauty of the wood structure to be exposed, creating a unique architectural experience for its occupants. Aesthetics, strength, and durability are combined in one engineered product. Structural laminated wood decking is an environmentally sustainable and cost-effective alternative to solid timber and other roof systems. This course discusses the characteristics of laminated wood decking and reviews recommended design, specification, and installation practices.

  • ( ~ 1 hour ) 

    Modern hydronic radiator systems are an energy-efficient, healthy, and hygienic solution for residential and commercial applications. This course discusses the principles of radiant heating and panel radiators, and how to size panel radiators for residential applications.

  • ( ~ 1 hour ) 

    An energy recovery ventilator (ERV) system provides occupants with filtered, balanced, and tempered air within their living space. Airborne contaminants can be greatly reduced with ERV systems. This course provides knowledge about the need, use, design, and installation of ERVs in the modern dwelling unit and when retrofitting existing structures. The course also addresses the environmental advantages of sustainable and healthy solutions for indoor air quality.

  • ( ~ 1 hour ) 

    The beautiful gray patina of zinc architectural metal has graced the rooftops of buildings in Europe for hundreds of years. This course examines the sustainable characteristics of zinc as a roofing material, including its 100% recyclability, zero VOC requirement, and low embodied energy production process. The life cycle analysis of zinc is examined, as is zinc’s long-term service life. Various types of roof and wall applications are also discussed.

  • ( ~ 1 hour ) 

    The thermal and dual modification of wood are processes used to improve wood’s profile in terms of durability, dimensional stability, overall performance, and inherent resilience and sustainability. The resulting products can be utilized in many building applications, from decking and siding to pergolas and nonstructural beams, as well as paneling, soffits, and interior trim applications. This course explores the science behind the thermal and dual modification of wood. Examples of modified wood and case studies are also reviewed.  

Displaying 1 - 25 of 245 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST