Construction Specifications Canada

Construction Specifications Canada strives to educate, connect and lead the design and construction community to achieve excellence in project delivery.

Click to Learn More About Construction Specifications Canada

Visit www.csc-dcc.ca and Join Now!

Displaying 1 - 25 of 630 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Energy creation, distribution, and consumption are all in a period of transition. Understanding this transition and its various aspects is critical to sustainable transitional energy planning (STEP). This course delves into the reasoning behind the STEP approach and its contributions to creating resilient communities and explores available exhaustible and renewable energy resources and innovations in the energy sector that can be leveraged by STEP.

  • ( ~ 1 hour, 15 minutes ) 

    There are many kinds of resin-based coatings for metal. The type of resin used plays an important role in determining a coating's durability and physical properties. This course discusses these coatings and their application techniques. It also discusses why the coatings may deteriorate and how to measure the performance of the coatings. The role that resin-based coatings perform in cool roofs is explored along with the standards that measure the sustainability of cool roofs. This course provides the information one needs to ensure that the coated product will perform as expected and provide a durable, long-lasting finish.

  • ( ~ 1 hour ) 

    Centralized mail and package delivery is often a last-minute design consideration that creates confusion due to the intersection of various federal compliance and accessibility requirements. This course explains how different mailbox installation types meet accessibility standards while remaining in federal and postal compliance and elevating mail areas from functional spaces to social ones.

  • ( ~ 1 hour, 15 minutes ) 

    Le besoin d’évaluer les ponts thermiques dans la conception et le rendement d’un bâtiment a gagné en importance en raison des exigences grandissantes en matière d’efficience énergétique des bâtiments. Ce cours sert d’introduction aux ponts thermiques, aux exigences du code de l’énergie et à l’usage de barrières thermiques conçues pour améliorer l’efficience énergétique de l’enveloppe du bâtiment.

  • ( ~ 1 hour ) 

    Meeting the ventilation requirements of ASHRAE 62.2 and maintaining an energy efficient home means balancing the need for fresh outdoor air and the energy needed to condition it. In this course we will examine the ventilation requirements in ASHRAE 62.2, discuss how they can be met, and look at some solutions for energy efficient ventilating.

  • ( ~ 1 hour ) 

    The implementation of synthetic surfacing for leisure and performance applications is rapidly growing. Artificial materials such as synthetic turf (grass), synthetic green walls, and poured-in-place and court surfacing often outperform their natural counterparts. Additionally, increased safety standards and design expectations have accelerated innovation in the materials available to designers. This course outlines synthetic surfacing options and examines synthetic turf systems, detailing their design considerations, performance features, sustainability and health benefits, and associated return on investment (ROI).

  • ( ~ 1 hour ) 

    Cooktops are manufactured and classified by construction type and method of heat energy transfer. This course reviews the operation, control, performance, and efficiency of induction cooktops in comparison to their gas and electric counterparts, and shows how induction cooktops can be incorporated into any kitchen design in residential and specialty-commercial applications such as marine, mobile, military, academic, institutional, and hospitality.

  • ( ~ 1 hour ) 

    This course provides architects and designers with a comprehensive understanding of the transformative potential of modern gas fireplaces in contemporary design. It covers key technologies such as direct vent systems, frameless designs, natural heat release systems, and heat control innovations. Participants will recognize how to incorporate fireplaces as both functional heating solutions and architectural design elements. The course also reviews important safety features, including double-glass heat barriers, to ensure compliance with modern standards.

  • ( ~ 1 hour, 15 minutes ) 

    Increased energy efficiency in both new and existing construction continues to be a large factor behind the design decisions we make and the materials we choose to integrate into our buildings. Concrete masonry construction can provide a wide range of benefits. This course illustrates how building envelopes constructed with concrete masonry create high-performance buildings that can exceed energy code requirements.

  • ( ~ 1 hour ) 

    Adding wood, stone, or masonry accents can dramatically change the look of a space, but time, cost, or even structural requirements can interfere. This course reviews the use of realistic, lightweight, cost-effective, and easy-to-install options for decorative faux elements. The performance, design options, and installation of high-density polyurethane panels, beams, truss systems, mantels, and column covers are examined.

  • ( ~ 1 hour ) 

    The choice of flooring is an important consideration in museums; their popularity brings a high volume of foot traffic, and museum spaces have a wide range of flooring needs. This course discusses how recycled rubber flooring is a good choice for museums because of its sustainability, durability, low maintenance requirements, performance attributes, and wide variety of design options.

  • ( ~ 1 hour ) 

    Direct vent fireplaces are safe and efficient supplemental heat sources in today’s homes. This course reviews the innovative design options for gas fireplaces, including media options, cool wall technology, and safety barriers. Direct and power vent heat delivery systems are discussed, and the impact of standing versus electric pilot lights on energy efficiency is examined.

  • ( ~ 1 hour ) 

    Extreme weather events of all sorts are becoming increasingly frequent and ferocious. Wood stick-framed structures struggle to withstand them. As climate behavior shifts and worsens, building damage and destruction increase, building codes evolve, and insurance premiums skyrocket or simply become unavailable for certain building types in some locations. Architects must now utilize stronger, more resilient, noncombustible building approaches to address this situation. In addition, mounting pressures related to labor shortages, rising material costs, stringent building codes, and environmental volatility are pushing architects, developers, and engineers to reimagine their approaches to structural design and material selection. This course explores how an innovative, scalable, and economical cold-formed steel column and composite beam framing system can and does address these issues to create faster and deliver stronger, more cost-effective, and sustainable projects. This well-proven, code compliant system reduces dependencies on multiple trades and minimizes the number of handoffs, positively impacting schedule compression, which then translates directly into earlier openings, faster revenue generation, and reduced labor costs. The system is applicable to a range of housing, hotel, and commercial midrise projects in all climates. The course begins by exploring the limitations of traditional wood and metal framing systems. It then describes this prefabricated cold-formed steel (CFS) column and beam framing system and its details, erection methodology, advantages, environmental and sustainability benefits, accreditations, and certifications. It concludes with some representative examples of real-life projects.

  • ( ~ 1 hour ) 

    Architectural railing systems offer safety, durability, strength, and design flexibility for a variety of indoor and outdoor applications. This course provides an overview of the important factors that need to be considered when selecting and specifying a railing system for a commercial or residential building project. Topics include materials and finishes, fabrication and installation, and relevant building codes and standards.

  • ( ~ 1 hour ) 

    Throughout history, concrete mixes and carved natural stone have combined to create substance, beauty, and longevity in our architecture. Glass fiber reinforced concrete (GFRC) was created to ensure that the attributes of concrete and stone continue to be enjoyed but with efficiency in the application that is expected in today's world of design. This course covers the creation of GFRC, its components, fabrication, applications, and design capabilities. It compares GFRC to other types of architectural concrete and presents GFRC performance and sustainable design advantages.

  • ( ~ 1 hour ) 

    Wind forces always influence building design and detailing. This course focuses on one particular force, wind uplift, and its influence on roof paving system design and selection. It examines how wind loads and building configuration affect the design of roof paving systems; the codes, regulations, and calculation approaches that inform and control such designs; and the various options designers can use to design safe, appealing outdoor roof paving systems that will withstand even the strongest winds.

  • ( ~ 1 hour ) 

    A naturally occurring radioactive gas, radon is a silent danger to our health. Colorless and odorless, it enters homes and structures through openings in the foundation and below-grade walls, becoming trapped in basements and other poorly ventilated areas. This course looks at methods of controlling radon, how it is addressed in building codes, the advantages of closed-cell spray polyurethane foam (ccSPF) over other insulation materials, and proper installation techniques.

  • ( ~ 1 hour ) 

    Designers, building users, and managers are increasingly focused on building and occupant health as well as energy conservation. This course explores how mixed-mode (hybrid) ventilation systems address all these issues by improving the ratio of fresh air introduced into buildings while reducing energy needs and costs. It describes the benefits, elements, and workings of these systems and provides design guidance and illustrative case studies.

  • ( ~ 1 hour ) 

    Designing to accommodate thermal movement is just one of the many critical details for the long-term success of a metal roof installation. This course covers the design and specification considerations and architectural details that impact project requirements, as well as the components and the energy-efficient features of metal roofing assemblies.

  • ( ~ 1 hour ) 

    When the asphalt fumes, open flame, and kettles that accompany hot-applied roofing are not permissible, cold-applied roofing is an option. There are a variety of types of cold-applied roofing that offer easy portability of materials to the roof, smaller roofing crews, ease of application, and a low-VOC option. In this course, we focus on the adhesive application of modified bitumen membranes using bituminous cold-process adhesives, the adhesive types, their components and characteristics, application methods, and design and use considerations.

  • ( ~ 1 hour ) 

    Megatrends are long-term global trends that impact societies in complex ways, including design of the built environment. This course examines seven megatrends and how they may inspire kitchen and bath designers to create accessible, diverse, and sustainable solutions to the social and environmental issues our society faces.

  • ( ~ 1 hour ) 

    Daylighting is the controlled admission of natural light into a building. It takes into consideration both direct and diffuse sunlight and reduces use of electric light, thereby decreasing energy costs. By controlling daylight, solar heat gain can be minimized, lowering the demand on HVAC systems. This course evaluates a variety of daylighting strategies for commercial applications and includes discussions about the relevance of daylight factor calculations and the impact fabric characteristics have on a shading solution.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20–70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour, 15 minutes ) 

    Insulation can help increase overall energy efficiency, minimize the spread of fire, manage risks associated with moisture and mold, and improve occupant comfort. Choosing the right insulation and putting it in the right location is becoming one of the most important decisions in design, construction, and retrofit. Reviewed in this course are the features, benefits, and design and installation considerations related to mineral wool continuous insulation.

  • ( ~ 1 hour ) 

    Seniors represent a rapidly growing segment of the population and are entitled to living spaces that promote their safety and wellness. This course emphasizes the importance of accessibility and universal design in meeting the diverse needs of users of all ages and abilities. Specifically, it explores the use of adjustable lavatories and salon sink systems in senior living residences and how they cater to the needs of residents and personal care workers. The course also covers relevant plumbing and electrical codes and standards.

Displaying 1 - 25 of 630 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST