Construction Specifications Canada

Construction Specifications Canada strives to educate, connect and lead the design and construction community to achieve excellence in project delivery.

Click to Learn More About Construction Specifications Canada

Visit www.csc-dcc.ca and Join Now!

Displaying 1 - 25 of 627 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    Made from one of the hardest and most abundant minerals in nature, engineered quartz is a beautiful, durable surface solution for a wide range of commercial and residential applications desiring the beauty of natural stone without its drawbacks. The raw materials of quartz surfacing are harvested from the Earth and formed into slabs via an innovative production process, resulting in a homogenous, nonporous material with superior performance and low maintenance requirements. Reviewed in this course are the features, fabrication guidelines, and design trends of quartz surfacing.

  • ( ~ 1 hour ) 

    The reasons for and benefits of adopting STEP have become increasingly clear as both national and international communities continue in their efforts to transition from dirty fuel sources to renewable ones. This course reviews the various systems and strategies that enable STEP, such as smart grids and microgrids, and explores strategies that STEP enables, such as integrated design processes, efficient water management, and energy innovation.

  • ( ~ 1 hour ) 

    Universal hot water availability is generally taken for granted. At a time when energy prices and sources, environmental concerns, and water shortages are increasing in significance, it is important to produce hot water in a manner that addresses all these issues. This course explains how electric tankless water heaters (ETWHs) do this while also improving health and safety conditions and reducing costs. The examination includes detailed descriptions of many types of ETWHs and the basic calculations and selection criteria for the most suitable system.

  • ( ~ 1 hour ) 

    Provides an overview of the types, features, and benefits of designing with cellular PVC trim, including a discussion on the installation guidelines and manufacturing processes.

  • ( ~ 1 hour ) 

    Ventilation grilles influence HVAC system performance but can pose aesthetic challenges for designers. Custom grilles made with modern fabrication techniques employ a variety of materials and finishes to create solutions that enhance and fully integrate with architectural interiors. This course discusses the basic mechanics of effective air distribution in buildings, performance characteristics of grilles, grille types, and custom design options.

  • ( ~ 1 hour, 15 minutes ) 

    This course explores a 5,000-square-foot office expansion recently completed by Excel Dryer. The building owner was committed to reducing their environmental impact and building a beautiful, healthy, sustainable, and functional space. This course discusses the relevant tools for sustainable, healthy buildings, including the WELL Building Standard™ version 2 and the LEED® v4.1 Building Design and Construction rating system. The methods for achieving these goals are examined through various building products and systems: walls, furniture, HVAC, sound masking and acoustic systems, flooring, daylighting and solar shading, and plumbing.

  • ( ~ 1 hour ) 

    Thermally controlled environments such as cold storage freezers and coolers, and food processing and packaging facilities take many different forms. Their performance and functionality depend on their project-specific requirements and can be affected by the conditions the materials and systems are subjected to. This course discusses how insulated metal panels (IMPs) perform the necessary functions to provide an effective energy-efficient building envelope and why they are suitable for use within temperature-controlled hygienic environments—where performance is critical.

  • ( ~ 1 hour, 15 minutes ) 

    Uncorrected thermal bridging can account for 20–70% of heat flow through a building's envelope. Improving details to mitigate both point and linear thermal bridges will significantly improve energy performance. This course reviews types of thermal bridges, examines how they appear in codes and standards, and explores some mitigation concepts and principles. Calculation methods to account for thermal bridging in your projects are introduced, and a sample design project is used to demonstrate code compliance.

  • ( ~ 1 hour ) 

    Corrosion is a significant concern for interior and exterior metal doors and frames, primarily due to the constant exposure to environmental factors like moisture, humidity, salts, and chemicals. Corrosion not only affects the aesthetics of these structures but also compromises their structural integrity and performance. This presentation reviews the causes, types, impacts, and treatments of corrosion in metal doors and frames. It examines how preventive measures related to materials and door design and construction inhibit corrosion, contributing to a durable, safe, and functional entryway and exit.

  • ( ~ 1 hour ) 

    Structural HDPE plastic lumber offers strength, durability, and design versatility and is a sustainable alternative to traditional building materials. This course examines the types of structural HDPE plastic lumber and their manufacturing processes and provides technical information on performance attributes, suitable applications, installation considerations, and design guidelines. Comparisons are made to wood and wood-plastic composite lumber. Also presented is how recycled HDPE plastic lumber may help meet credit requirements in the Sustainable SITES Initiative® (SITES® v2) and LEED® v4.1 Building Design and Construction (BD+C) and Residential BD+C rating systems. Case studies demonstrate the exemplary performance of structural HDPE plastic lumber in aggressive environmental conditions.

  • ( ~ 15 minutes ) 

    Policies targeting the reduction of carbon emissions associated with building products require the disclosure of embodied carbon data to inform those policies and verify whether reduction targets or incentive requirements have been met. This course aims to provide a guide to collecting high-quality embodied carbon data.

  • ( ~ 1 hour ) 

    Designing with green roofs affords design professionals opportunities to plan projects with exciting new elements, added value, and significant, tangible benefits, thereby enhancing the built environment with newly-created landscapes. This course examines green roof systems, including the types, benefits, components, and related standards. As well, it provides a discussion on how green roofs mitigate urban heat island effect and reduce stormwater runoff.

  • ( ~ 1 hour ) 

    Today's complex steel structures present numerous design challenges, including the challenge of fireproofing appropriately in order to ensure the safety and well-being of building occupants as well as protection of the structure itself. This course outlines the code and testing standards that inform fireproofing choices and the various passive fire protection products and methodologies that can address a comprehensive range of design challenges; insight into the proper specification of fire protection products as well as their ability to improve LEED® certification levels is also provided.

  • ( ~ 1 hour ) 

    Cooktops are manufactured and classified by construction type and method of heat energy transfer. This course reviews the operation, control, performance, and efficiency of induction cooktops in comparison to their gas and electric counterparts, and shows how induction cooktops can be incorporated into any kitchen design in residential and specialty-commercial applications such as marine, mobile, military, academic, institutional, and hospitality.

  • ( ~ 30 minutes ) 

    As synthetic turf systems evolve as functional and aesthetic landscape solutions, conversations about sustainability, particularly environmental impacts, are essential. This course addresses the sustainability of synthetic turf from the triple-bottom-line perspective: profit, people, and planet. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Plumbing design is highly regulated; improper design and installation can pose a serious health risk or result in costly property damage. This course reviews the plumbing codes and standards that govern plumbing fittings and fixtures, with special attention to standards to control the leaching of organics, metals, and lead into drinking water.

  • ( ~ 1 hour ) 

    This course delves into the increasing and expanding role of outdoor living and its importance in households, businesses, and communities. Reviewed are the styles and specification considerations of aluminum shading products. The focus is pergolas and cabanas made with dual-walled aluminum louvers that seal completely to block rain and snow and complement any architectural style.

  • ( ~ 1 hour, 30 minutes ) 

    Within building spaces, noise can be reduced by using materials or assemblies that isolate sound or mitigate its transmission. To do this, it is important to understand how sound moves through building materials and partitions and the impact of sound mitigation products. In this course, we look at the basics of sound as well as techniques and products to prevent sound transmission.

  • ( ~ 1 hour ) 

    Protected membrane roof (PMR) assemblies have been widely adopted in low-slope commercial buildings since the late 1960s. Also known as inverted or upside-down roofs, PMR assemblies move the waterproofing membrane from the top of the roof assembly to the surface of the structural deck. This course explores how PMR assemblies provide several advantages over conventional roof assemblies, offering superior protection against water penetration and enhanced energy efficiency. The course also shows how PMR assemblies allow for the creation of green roofs or blue roof systems. With a proven record of reliability, PMR assemblies present a compelling solution for architects seeking innovative, sustainable, and efficient roofing options.

  • ( ~ 1 hour ) 

    Specialty door and frame assemblies have been developed that are designed specifically for the built healthcare environment where performance criteria are critical. Reviewed in this course are specialty door and frame assemblies that meet the challenges of infection prevention, building cleanliness, patient privacy, and increased security, as well as containment of radio wave and radiation interference in hospitals and clinics.

  • ( ~ 1 hour, 30 minutes ) 

    Masonry is an ideal sustainable building construction material as it is extremely durable, recyclable, and reusable. It allows for extraordinary design versatility, so it can meet both aesthetic and functional requirements. This course looks at the design elements, components, and construction techniques that characterize sustainable masonry cavity wall building envelopes.

  • ( ~ 1 hour, 15 minutes ) 

    The need to evaluate thermal bridging in a building’s design and performance has become more prevalent because of the increasing requirements for more energy-efficient buildings. This course provides an introduction to thermal bridging, energy code requirements, and the use of thermal break solutions designed to improve energy efficiency in the building envelope.

  • ( ~ 1 hour ) 

    Seattle has ranked among the country’s fastest-growing cities since the mid-1990s, causing gentrification and displacement of vulnerable communities. For example, African Americans accounted for 73 percent of Seattle’s Central District (CD) population in 1970 and have fallen to less than 14 percent today. As a result, Black churches in the CD face difficult decisions about whether to stay or relocate. However, the churches own property and other assets and, working as a network, could mitigate this gentrification and displacement through strategic real estate development. This vision is advanced by the Nehemiah Initiative Seattle, a collaboration focused on developing the significant real estate assets of Black churches to stabilize and benefit the CD’s African American community. Since 2019, the Nehemiah Initiative has been collaborating with the College of Built Environments at the University of Washington through a series of interdisciplinary design studios focused on this vision. This presentation provides a brief history of Seattle’s Central District, an overview of the Nehemiah Initiative, and the mutual benefits of collaboration between the academy and the community.

  • ( ~ 1 hour ) 

    Architectural finishes mimic the aesthetics and textures of natural materials without the cost, labor, weight, and maintenance challenges of finishes such as wood, stone, leather, and metals. This course discusses their performance characteristics, selection considerations, and proper installation techniques for interior and exterior commercial applications, including fire-rated assemblies and LEED®-certified projects.

  • ( ~ 1 hour ) 

    Polyisocyanurate (polyiso) insulation is one of North America’s most widely used, readily available, and cost-effective insulation products. While polyiso is currently most commonly known for its use on roofs and walls, this course focuses on the many benefits of using it in below-grade installations in order to meet energy codes, maximize the building foundation’s thermal performance, and extend the overall life of the structure. The course explores the requirements for three primary characteristics of any below-grade insulation—thermal performance, water absorption, and load capacity—and describes how polyiso meets or exceeds those requirements and protects the foundation waterproofing system.

Displaying 1 - 25 of 627 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST