Construction Specifications Canada

Construction Specifications Canada strives to educate, connect and lead the design and construction community to achieve excellence in project delivery.

Click to Learn More About Construction Specifications Canada

Visit www.csc-dcc.ca and Join Now!

Displaying 1 - 25 of 632 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour ) 

    At this time, there are no national or state codes relating to snow retention for roofing applications, even in the heaviest snow load areas. Consequently, it is very important for building professionals to take extra care when designing a snow retention system for installations in snowy environments. This course provides a review of the problems and solutions associated with roofing in cold climates, including a discussion on the proper engineering of snow retention devices. There are many dangers involved if the appropriate considerations are not made while building and maintaining a roof in an alpine region.

  • ( ~ 1 hour, 15 minutes ) 

    Architects and designers have many options for specifying site furniture products for their projects. Selecting materials and finishes is an integral part of this process, yet making material selections has become more and more complex. The course examines conditions and constraints of outdoor environments; evaluates materials commonly used in outdoor applications; discusses using green building standards and rating systems, and the role of suppliers as resources for material selection; and provides examples of products that adhere to a higher environmental standard.

  • ( ~ 1 hour ) 

    Light in the hands of a lighting designer is like a brush in the hands of an artist—it can make or break a show. In this course, we’ll explore the controllable properties of light, the various lighting fixture types and configurations commonly used in a stage setting, and the power and control distribution methods that underpin an effective lighting design. We’ll also review industry standards for low- and medium-voltage control methods, the evolution of related data systems, and the changes it has wrought in the industry.

  • ( ~ 1 hour ) 

    With limited exceptions, the International Building Code® (IBC®) requires testing and compliance with NFPA 285 for exterior wall assemblies of buildings of Types I, II, III, and IV construction containing foam plastic insulation. This course examines three methods for demonstrating that an exterior wall assembly design complies with NFPA 285, including engineering analysis. The course also discusses how and where to locate NFPA 285 information for each compliance method.

  • ( ~ 1 hour ) 

    Palm is a plentiful but underused resource with many possibilities to enhance architectural design. This course describes the growth, harvesting, and rendering of palm, how it is manufactured into flooring, plywood, and paneling products, and what to consider when specifying and installing. A detailed look at the products available as well as project examples demonstrates how palm products may apply to several credits and features in the LEED® v4.1 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    This course provides an overview of types of hybrid vinyl flooring and how they contribute to long-term value through reduced maintenance needs, verified indoor air quality performance, and responsible material sourcing. It examines manufacturing processes, product content, and material transparency that influence consistency, durability, and environmental impact. These attributes can support credit achievement in green building programs such as the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems and the WELL Building Standard™ version 2 by addressing low-emitting materials, responsible manufacturing, and product transparency.

  • ( ~ 1 hour, 15 minutes ) 

    An expansion joint is a structural gap designed to accommodate the movement of a building in a controlled manner, preventing damage to the building’s internal and external finishes. Expansion joints run throughout a building in walls, ceilings, and floors. Expansion joint covers provide a covered transition across an expansion opening and remain unaffected by the relative movement of the two surfaces either side of the joint. This course explains how to determine joint movement requirements and how to size a joint. It also discusses the performance of different expansion joint cover systems and the applicable fire protection and building codes.

  • ( ~ 1 hour ) 

    This course examines the role of access doors and panels in building design. It covers their functions, material options, and performance requirements. Topics include resistance to fire, sound, and moisture, as well as durability, code compliance, and integration with surrounding finishes. The course also presents best practices for specifying and installing access components that support safety, accessibility, and design continuity across a range of project types.

  • ( ~ 1 hour ) 

    Due to advancements in architectural decorative glass technology, the number of design options available to help designers and architects achieve the specific aesthetics and performance requirements they desire has dramatically increased. This course provides a review of architectural decorative glass including product options, applications, features, and specification considerations. Also discussed is how decorative glass can contribute to sustainable design and LEED® initiatives.

  • ( ~ 1 hour ) 

    The recent shift towards protecting the environment has also brought about a better understanding of our innate need to reconnect with our natural surroundings. This is known as biophilia. In this course, we will examine the elements of biophilic design and how to implement biophilic design strategies, known to improve physical and mental well-being of occupants. The use of resilient flooring in commercial applications offers an opportunity to implement biophilic design.

  • ( ~ 1 hour ) 

    Thermally controlled environments such as cold storage freezers and coolers, and food processing and packaging facilities take many different forms. Their performance and functionality depend on their project-specific requirements and can be affected by the conditions the materials and systems are subjected to. This course discusses how insulated metal panels (IMPs) perform the necessary functions to provide an effective energy-efficient building envelope and why they are suitable for use within temperature-controlled hygienic environments—where performance is critical.

  • ( ~ 1 hour ) 

    Concrete products such as precast pieces, pavers, and terrazzo have long provided builders with a flexible range of options for their projects. Beyond their versatility, these concrete products are highly sustainable, thanks to their ability to be recycled, low carbon footprint, and long life span.

  • ( ~ 1 hour ) 

    In the last couple of decades, houses have become progressively more airtight due to energy efficiency and cost concerns. While air infiltration and exfiltration rates have been significantly reduced, the need for an efficient ventilation system has become extremely important. This course evaluates different types of mechanical ventilation systems and discusses why heat recovery ventilation (HRV) and energy recovery ventilation (ERV) systems are characterized by a high level of energy efficiency and as an effective means for improving indoor air quality.

  • ( ~ 1 hour ) 

    Falls are responsible for more open wounds, fractures, and brain injuries than any other cause of injury. Photoluminescent (PL) exit path markers have proven to provide safe and quick egress in all light conditions for occupants and fail-safe guidance to first responders entering unfamiliar surroundings in the event of an emergency. This course discusses the benefits of PL safety products and the codes and testing standards related to PL way-finding systems.

  • ( ~ 1 hour ) 

    Understanding the performance of building materials in real-world conditions is key to a successful building design. Recent studies have shown that the commonly reported R-values of polyisocyanurate foams at room temperature may overstate their real-world performance in cooler temperatures, potentially resulting in gaps in designed building enclosure assembly performance and quality. Through a theoretical framework and empirical data, this course shows that optimized polyisocyanurate foam insulation results in better performance, leading to improved energy savings and reduced potential for condensation. Participants are encouraged to explore innovative insulation materials, understand differences between them, and match optimal materials to specific applications while meeting modern construction codes and regulations. By matching the right insulation materials to the application, architects can contribute to energy-efficient and cost-conscious construction practices and help buildings reduce their impact on the environment.

  • ( ~ 1 hour ) 

    Main entrance air curtains are used by architects and engineers in commercial, institutional, and industrial settings to both improve energy efficiency and protect occupant comfort and well-being. This course reviews the research that led to air curtains being approved as an alternative to vestibules in ASHRAE 90.1-2019 and other building codes, as well as how air curtains on main entries contribute to sustainability goals around energy conservation, public health, and indoor air quality.

  • ( ~ 1 hour, 15 minutes ) 

    The diffuse light-transmitting and composite technology of translucent structural sandwich panels has increasingly caught the imagination of architects and designers because it is possible to maximize wall or roof daylighting while minimizing energy loss, with consequent savings in the running costs of heating, air conditioning, and artificial lighting. This course explores the fundamental connection between light and health by examining how translucent structural sandwich panels deliver glare-free, diffuse daylight deeper and more evenly into spaces with maximum thermal efficiency.

  • ( ~ 1 hour ) 

    Curved elements, such as walls, ceilings, columns, soffits, light covers, clouds, and arches have often been used to add interest to architectural designs. This course outlines conventional methods of framing curves in wood and steel, as well as new methods of framing using flexible track systems. Discussions include options for wall coverings and trims for curved surfaces.

  • ( ~ 1 hour ) 

    Historically, traditional waterproofing methods involve the placement of a barrier or membrane between the concrete and water. Unlike membranes and other surface systems, crystalline waterproofing is designed to make the concrete itself waterproof. This course discusses how crystalline waterproofing technology provides a high level of performance to concrete structures and what design professionals need to know in order to specify and understand how this chemical technology can improve building projects, cut costs, and help earn LEED® credits.

  • ( ~ 1 hour ) 

    Aluminum Full View (AFV) doors are a fast growing segment within the building product industry. They have a wide range of applications in a variety of building types. This course will look at potential applications and building types, options for installation, and custom options in design when specifying AFV doors.

  • ( ~ 1 hour ) 

    Off-leash dog parks are one of the fastest-growing segments of parks. As dogs are integral to families, designers should consider creating a park that benefits owners and their pets. This course discusses how dog parks contribute to owner health and well-being by increasing physical and social activity. Dog park design criteria are also examined, and case studies are reviewed.

  • ( ~ 1 hour ) 

    Assesses the urban environmental issues of stormwater runoff and heat islands and describes how their damaging impacts can be mitigated by blue, white, and green roofs. The considerations and additional benefits of each roof type are also discussed.

  • ( ~ 1 hour, 15 minutes ) 

    Critical to concrete waterproofing are the products used in combination to create a system that ensures complete control of moisture migration. Presented here are effective concrete waterproofing technologies and how they improve the durability and lifespan of structures. Discussions include water penetration, system selection, membrane protection, and cementitious waterproofing.

  • ( ~ 1 hour ) 

    This course reviews the evolution of accessible restrooms and the recent, sudden prominence of universal (or adult) changing tables. We’ll examine how new changes to both the International Building Code® and statewide legislation affect public restroom design, and the profound impact universal changing tables can have on the lives of people with disabilities and their caregivers.

  • ( ~ 1 hour ) 

    Redwood lumber and timbers from sustainably managed and harvested forests offer warmth, durability, and strength in indoor and outdoor projects. This course covers the performance characteristics, environmental benefits, and applications of Redwood, including several case studies that highlight the beauty and versatility of Redwood products. Details are presented on differentiating the grades of Redwood, specifying the right grade for the project type, and the specification resources that are available.

Displaying 1 - 25 of 632 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST