American Institute of Architects

As the largest design organization in the world, AIA is working to transform the day-to-day practice of architecture to achieve a zero-carbon, resilient, healthy, just, equitable built environment, for everyone.

Click to Learn More About the AIA

Visit www.aia.org and Join Now!

Displaying 1 - 25 of 604 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST

  • ( ~ 1 hour, 15 minutes ) 

    Concrete masonry units (CMUs) are made from dry-cast concrete, which uses less cement and sequesters carbon at a faster and greater rate than wet-cast concrete. This course begins with an overview of concrete products and the differences between dry- and wet-cast concrete, then explores the relationship between concrete and the carbon cycle, recent research into CMU sequestration rates, and the results of mini life-cycle assessments comparing different wall systems. Finally, some practical strategies for further reducing embodied carbon are reviewed.

  • ( ~ 1 hour ) 

    Architectural insulated metal panels (IMPs) are an increasingly popular choice for building developers and architects, presenting a compelling solution that combines functionality, efficiency, and aesthetic appeal. This course reviews the architectural IMP, its applications and benefits, and comparisons to other materials. It explores current trends and developments that are paving the way for increased aesthetic possibilities and building envelope performance.

  • ( ~ 1 hour ) 

    Doors installed in high-traffic conditions require special considerations and construction. This course explores the key concepts, best practices, and industry standards for selecting, specifying, installing, and maintaining durable and reliable heavy-usage doors. It details their material and hardware options, construction techniques, maintenance strategies, safety considerations, and required testing protocols. The course concludes with a sample installation.

  • ( ~ 1 hour ) 

    Ensuring proper use of methods and materials allows masonry walls to perform well and enjoy a long life. Use of masonry joint reinforcement and accessories is an essential part of this. This course provides a brief history of solid masonry walls leading up to the modern cavity walls of today, including a discussion of the basic working knowledge of masonry joint reinforcing, structural codes, and moisture control in cavity wall construction.

  • ( ~ 1 hour ) 

    The fireplace has always been a focal point in any home, providing warmth and a place for friends and family to gather. Today’s wood-burning fireplaces, inserts, and stoves have become increasingly efficient and clean burning. This course examines using wood as a fuel source and discusses the many characteristics that can affect heat production, efficiency, and burn time. New burning technologies that meet EPA certification requirements for released particulate matter are summarized, as are design and installation specifications.

  • ( ~ 1 hour ) 

    Elevate your railing designs with a premanufactured system without compromising aesthetics or adaptability to site conditions. When you choose a manufacturer with design and engineering capabilities, you can customize premanufactured systems to meet safety standards AND enhance a project’s design. In this course, we discuss how a railing manufacturer helped three architects create unique solutions from premanufactured components.

  • ( ~ 1 hour ) 

    Leading aluminum extrusion manufacturers have established a variety of methods pertaining to material grade, surface protection, and component solutions to maximize the benefits of aluminum to suit a wide variety of applications. These advancements in technology have led to the development of sustainable wood-patterned aluminum products designed for exterior and interior applications. This course focuses on how these products can be used as a beautiful, high-performance, durable alternative for real wood in a range of applications, including screens, facades, decking, fencing, gates, cladding, and more.

  • ( ~ 1 hour ) 

    In commercial, industrial, and parking structures, it is important to use doors that can provide speed, safety, separation, and security. High-performance roll-up doors provide all these elements better than conventional doors. This course provides an in-depth discussion of the different types of high-performance doors—fabric, rigid, and rubber—along with their benefits and functions in different applications. The design and installation considerations for using these doors are also discussed.

  • ( ~ 1 hour ) 

    Perforated metal panels combine functionality and aesthetics for a wide range of structures, from parking garages to schools, hospitals, office buildings, and more. This course reviews the many options for types of metal and finishes, attachment methods, and perforations, including custom designs and imaging. Application examples and case studies explore how perforated metal panels can be used as unique facades that offer ventilation, shading, safety, and concealment while creating striking aesthetics that enhance building design.

  • ( ~ 1 hour ) 

    New building materials don’t come around very often, and in some cases, an early high-profile stumble can shape perceptions of an otherwise valuable technology. Learning from those mistakes, however, is a fundamental element of driving technical innovation, and real, robust solutions to known issues can ultimately produce the highest level of performance. Magnesium oxide-based composite panels have been used as exterior wall sheathing for several decades due to a number of highly desirable properties, including resistance to fire, dimensional stability, high strength, and other attributes. Early iterations of boards were found to have issues related to moisture and chemical stability, leading to premature failure of the building façade but also teaching the industry specific factors that needed to be improved in future generations of board. Now, as a maturing product category, the enabling technology of how to make consistent, high-quality boards is well known, even if not universally practiced. In this presentation, we review the basics of MgO chemistry, how boards incorporating MgO cement have evolved over time to address early issues in board performance, and how this technology can be incorporated into building exterior wall systems with many favorable attributes.

  • ( ~ 1 hour ) 

    With the ever-increasing focus on the sustainable built environment, building owners, architects, engineers, and contractors are incorporating structural steel into their designs. Presented here is a comprehensive view of the cradle-to-cradle structural steel supply chain from a sustainability perspective. Also discussed are steel production and design, steel’s potential contribution to LEED v4 credits, thermal capacity, and the environmental and life cycle benefits of prefabricated fireproof steel columns.

  • ( ~ 1 hour ) 

    Commercial rolling service doors offer high performance solutions for demanding areas. Used both internally and externally, these doors provide excellent thermal insulation, strength, and durability in challenging environments. This course examines the characteristics of rolling service doors, fire doors, grilles, and shutters. Door operation, parts, fire code requirements, and wind load information are also discussed.

  • ( ~ 1 hour ) 

    This course introduces acetylated wood as a sustainable building material, exploring its origin, modification process, and environmental benefits. Participants will learn how acetylation enhances wood durability, stability, and resistance to decay—extending its service life and reducing maintenance. The course highlights how acetylated wood supports green building goals through renewable sourcing and nontoxic treatment and may help meet credit requirements in the LEED® v5 Building Design and Construction and Interior Design and Construction rating systems, the WELL Building Standard™ version 2, and the Sustainable SITES Initiative® v2. Real-world case studies demonstrate its use in architectural and preservation projects, offering practical insights into sustainable design applications.

  • ( ~ 1 hour, 15 minutes ) 

    The trend toward building with mass timber across the US and beyond is accelerating, requiring design professionals to understand the why, when, and how of designing a mass timber structure. The industry is dynamic and evolving along with the building codes that dictate mass timber system requirements and limits. This course identifies the considerations a designer should review before starting a mass timber project, including feasibility, trade partnering, material selection, building codes, logistics, and their overall impact on creating a successful mass timber project.

  • ( ~ 1 hour ) 

    Vehicle barriers are needed to protect property and occupants against various threats, including wayward drivers, accidental impacts, smash-and-grab burglaries, and vehicle-ramming attacks. Given the various barriers available, it is crucial to understand how to evaluate and select a perimeter security solution that suits each application. This course reviews the types of barriers and their related testing and performance standards to help ensure the right product is specified for the area it is intended to protect.

  • ( ~ 1 hour, 15 minutes ) 

    Metal is a versatile building material, boasting both historical credentials and modern aesthetics. To earn the right to rise to the top as the material of choice, however, metal must also demonstrate cost efficiency, durability, and minimal environmental impact. In this course, we will examine the value of metal roofs and walls during initial construction and through a building’s life cycle and illustrate metal’s benefits with a number of case studies.

  • ( ~ 1 hour ) 

    The selection of windows and doors for a particular project must satisfy its aesthetic and functional requirements. However, we also want windows and doors to be safe, durable, leak-free, and energy efficient and meet the needs of those with disabilities. The International Building Code® and related standards ensure that windows and doors support public health, safety, well-being, and energy efficiency. This course provides an overview of the codes and standards for doors and windows, including weather resistance, durability, egress, safety, and accessibility requirements.

  • ( ~ 1 hour, 15 minutes ) 

    The use of life safety dampers is driven by requirements in various building codes. There are many different applications for which fire, fire/smoke, smoke, and/or ceiling radiation dampers can be used, each having its own specific purpose and unique installation requirements. This course gives an in-depth look at the different types of dampers and explains how and where they're each used and installed.

  • ( ~ 1 hour ) 

    Stormwater management is critical in an era when severe storms and sewer overflows are increasing in many areas. In urban contexts where open space is at a premium, using on-structure bioretention planters can be the ideal approach. This course explores the benefits of bioretention and how bioretention planters reduce peak flows and improve water quality. The course also discusses how bioretention planters should be designed, can perform as amenities, and contribute to meeting the requirements of green building certification programs.

  • ( ~ 1 hour ) 

    Precious metals are valued for their beauty, durability, scarcity, and workability. This course explores the history, symbolism, and characteristics of precious metals and how to use them in modern luxury bath and kitchen design.

  • ( ~ 1 hour ) 

    The AIA Materials Pledge identifies five impact areas that building products and materials can and should address: ecosystem health, social health and equity, circular economy, climate health, and human health. This course reviews the concepts, certifications, and tools designers can apply to choose materials that support these five impact areas, including the mindful MATERIALS Common Materials Framework (CMF), the industry’s first common language for sustainable building materials. Finally, the course presents practical examples of exemplary products and materials and assesses them using this framework.

  • ( ~ 30 minutes ) 

    As cities continue to grow, incorporating synthetic surfacing into rooftop spaces offers a safe, practical, and innovative solution to creating more livable, attractive, and resilient urban environments. The course explores synthetic rooftop surfacing, including its applications; environmental, health, and safety benefits; and product, manufacturer, and installer certifications. Also discussed is how synthetic turf can contribute to achieving certification in LEED® v4.1 Building Design and Construction, Sustainable SITES Initiative® v2, and the WELL Building Standard™ version 2.

  • ( ~ 1 hour ) 

    Incorporating bulletproof glass into any facility is a sizable investment; however, it is a small price to pay for the protection of human lives. This course illustrates how to maximize that investment by selecting and installing the appropriate system for the threat level and the functional needs of the client. Discussed are UL protection level ratings; types of bullet-resistant barrier systems and their components; planning, production, and installation of systems; security window film vs. bullet-resistant glass; and project security checklists.

  • ( ~ 1 hour ) 

    Designing restrooms to allow for and maximize proper hygiene is important in reducing the spread of germs. This course discusses the elements of hygienic restroom design and how reducing required touchpoints helps to increase safety and cleanliness. The key steps in proper hand hygiene are also discussed. The course then focuses on hand dryers and considers their impact on hand hygiene and sustainability. The future of commercial restroom design is then explored.

  • ( ~ 1 hour ) 

    Underslab moisture is something that designers need to take into consideration in both the design and construction phases of a building project. It can cause many problems for the building and the health of its occupants over the course of its life span; however, if properly addressed during design and construction, many of these issues can be mitigated. This course looks at the different types of moisture movement that exist below the slab, examines solutions for a variety of site conditions, and reviews best practices for managing moisture.

Displaying 1 - 25 of 604 results.

FIRST [1-25] [26-50] [51-75] [76-100] [101-125] NEXT LAST